Skip to main content
Log in

Electronic and transport properties of a biased multilayer hexagonal boron nitride

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We explore the electronic and transport properties out of a biased multilayer hexagonal boron nitride (h-BN) by first-principles calculations. The band gaps of multilayer h-BN decrease almost linearly with increasing perpendicular electric field, irrespective of the layer number N and stacking manner. The critical electric filed (E 0) required to close the band gap decreases with the increasing N and can be approximated by E 0 = 3.2 / (N − 1) (eV). We provide a quantum transport simulation of a dual-gated 4-layer h-BN with graphene electrodes. The transmission gap in this device can be effectively reduced by double gates, and a high on-off ratio of 3000 is obtained with relatively low voltage. This renders biased MLh-BN a promising channel in field effect transistor fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  2. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett. 10, 3209 (2010)

    Article  ADS  Google Scholar 

  3. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 4, 2979 (2010)

    Article  Google Scholar 

  4. A. Abdellaoui, A. Bath, B. Bouchikhi, O. Baehr, Mater. Sci. Eng. B 47, 257 (1997)

    Article  Google Scholar 

  5. Z.L. Yang, J. Ni, J. Appl. Phys. 107, 104301 (2010)

    Article  ADS  Google Scholar 

  6. D. Pacile, J.C. Meyer, C.O. Girit, A. Zettl, Appl. Phys. Lett. 92, 133107 (2008)

    Article  ADS  Google Scholar 

  7. R.M. Ribeiro, N.M.R. Peres, Phys. Rev. B 83, 235312 (2011)

    Article  ADS  Google Scholar 

  8. V.L. Solozhenko, A.G. Lazarenko, J.P. Petitet, A.V. Kanaev, J. Phys. Chem. Solids 62, 1331 (2001)

    Article  ADS  Google Scholar 

  9. K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004)

    Article  ADS  Google Scholar 

  10. L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 96, 126104 (2006)

    Article  ADS  Google Scholar 

  11. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5, 722 (2010)

    Article  ADS  Google Scholar 

  12. A. Ramasubramaniam, D. Naveh, E. Towe, Nano Lett. 11, 1070 (2011)

    Article  ADS  Google Scholar 

  13. R.G. Quhe, J.X. Zheng, G.F. Luo, Q. Liu, R. Qin, J. Zhou, D.P. Yu, S. Nagase, W.N. Mei, Z.X. Gao, J. Lu, NPG Asia Materials 4, e6 (2012), DOI: 10.1038/am.2012.10

    Article  Google Scholar 

  14. K. Tang, R. Qin, J. Zhou, H. Qu, J. Zheng, R. Fei, H. Li, Q. Zheng, Z. Gao, J. Lu, J. Phys. Chem. C 115, 9458 (2011)

    Article  Google Scholar 

  15. A.A. Avetisyan, B. Partoens, F.M. Peeters, Phys. Rev. B 81, 115432 (2010)

    Article  ADS  Google Scholar 

  16. J.B. Oostinga, H.B. Heersche, X.L. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Nat. Mater. 7, 151 (2008)

    Article  ADS  Google Scholar 

  17. Y.B. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)

    Article  ADS  Google Scholar 

  18. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  ADS  Google Scholar 

  19. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Jungthawan S. Limpijumnong, J.-L. Kuo, Phys. Rev. B 84, 235424 (2011)

    Article  ADS  Google Scholar 

  21. M.O. Watanabe, S. Itoh, T. Sasaki, K. Mizushima, Phys. Rev. Lett. 77, 2846 (1996)

    Article  ADS  Google Scholar 

  22. ATOMISTIX Toolkit, version 11.2. Quantum Wise A/S: Copenhagen, Denmark

  23. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 121104 (2001)

    Article  ADS  Google Scholar 

  24. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  26. S. Dattan Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, England, 1995)

  27. M. Otani, S. Okada, Phys. Rev. B 83, 073405 (2011)

    Article  ADS  Google Scholar 

  28. J. Slawinska, I. Zasada, Z. Klusek, Phys. Rev. B 81, 155433 (2010)

    Article  ADS  Google Scholar 

  29. E.K. Yu, D.A. Stewart, S. Tiwari, Phys. Rev. B 77, 195406 (2008)

    Article  ADS  Google Scholar 

  30. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacqu, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B.J. LeRoy, Nat. Mater. 10, 282 (2011)

    Article  ADS  Google Scholar 

  31. H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, Nano Lett. 10, 5049 (2010)

    Article  ADS  Google Scholar 

  32. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Tang or J. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, K., Ni, Z.Y., Liu, Q.H. et al. Electronic and transport properties of a biased multilayer hexagonal boron nitride. Eur. Phys. J. B 85, 301 (2012). https://doi.org/10.1140/epjb/e2012-30236-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30236-6

Keywords

Navigation