Skip to main content
Log in

Computer modeling of blood brain barrier permeability for physiologically active compounds

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The review considers the current level of computer modelling of the relationship between structure of organic compounds and drugs and their ability to penetrate the blood brain barrier (BBB). All descriptors that influence BBB permeability within classification and regression QSAR models have been summarized and analyzed. Special attention is paid to the crucial role of H-bond for processes of both passive and active transport across the BBB. It is concluded that subsequent progress in computer modelling of the BBB penetration capacity for drug substances will be achieved after characterization of a spatial structure of the full-size P-glycoprotein molecule with high resolution and the creation of QSAR models describing quantitative relationship between structure and active transport of substances across the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradbury, M., Kontseptsia gematoentsefalicheskogo bar’era (The Concept of the Blood-Brain Barrier, Russian translation), Moscow: Meditsina, 1983.

    Google Scholar 

  2. Pokrovskii, V.M., Korot’ko, G.F., Kobrin, V.I. et al., Fiziologiya cheloveka: uchebnik (Textbook on Human Physiology), Moscow: Meditsina, 1997.

    Google Scholar 

  3. Wolf, S., Seehaus, B., and Minol, K., Naturwissenschaften, 1996, vol. 83, pp. 302–311.

    Article  CAS  Google Scholar 

  4. Risau, W., Engelhardt, B., and Wekerle, H., J. Cell Biol., 1990, vol. 110, pp. 1757–1766.

    Article  CAS  Google Scholar 

  5. Abbott, N.J., Rönnbäck, L., and Hansson, E., Nat. Rev. Neurosci., 2006, vol. 7, pp. 41–53.

    Article  CAS  Google Scholar 

  6. Lee, J., Progr. Neuropathol., 1971, vol. 1, pp. 84–145.

    CAS  Google Scholar 

  7. Hawkins, B.T. and Davis, T.P., Pharmacol. Rev., 2005, vol. 57, pp. 173–185.

    Article  CAS  Google Scholar 

  8. Yu, A.S., McCarthy, K.M., Francis, S.A., McCormack, J.M., Lai, J., Roger, R.A., Lynch, R.D., and Schneeberger, E.E., Am. J. Physiol. Cell Physiol., 2005, vol. 288, pp. 1231–1241.

    Article  CAS  Google Scholar 

  9. Wolburg, H. and Lippoldt, A., Vasc. Pharmacol., 2002, vol. 38, pp. 323–337.

    Article  CAS  Google Scholar 

  10. Lee, G., Dallas, S., Hong, M., and Bendayan, R., Pharmacol. Rev., 2001, vol. 53, pp. 569–596.

    CAS  Google Scholar 

  11. Banks, W.A., BMC Neurol., 2009, vol. 9,Suppl. 1, pp. S1–S3.

    Google Scholar 

  12. Bernacki, J., Pharmacol. Reports, 2008, vol. 60, pp. 600–622.

    CAS  Google Scholar 

  13. Roberts, L.M., Black, D.S., Raman, C., et al., Neuroscience, 2008, vol. 155, pp. 423–438.

    Article  CAS  Google Scholar 

  14. Tsuji, A., NeuroRx., 2005, vol. 2, pp. 54–62.

    Article  Google Scholar 

  15. Dahlin, A., Royall, J., Hohmann, J.G., and Wang, J., J. Pharmacol. Exp. Ther., 2009, vol. 329, pp. 558–570.

    Article  CAS  Google Scholar 

  16. Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., and Endou, H., J. Biol. Chem., 1998, vol. 273, pp. 23629–23632.

    Article  CAS  Google Scholar 

  17. Mastroberardino, L., Spindler, B., Pfeiffer, R., Skelly, P.J., and Loffing, J., Nature, 1998, vol. 395, pp. 288–291.

    Article  CAS  Google Scholar 

  18. Pineda, M., Fernandez, E., Torrents, D., Estevez, R., et al., J. Biol. Chem., 1999, vol. 274, pp. 19738–19744.

    Article  CAS  Google Scholar 

  19. Segawa, H., Fukasawa, Y., Miyamoto, K., Takeda, E., and Endou, H., J. Biol. Chem., 1999, vol. 274, pp. 19745–19751.

    Article  CAS  Google Scholar 

  20. Kido, Y., Tamai, I., Uchino, H., Sai, Y., Suzuki, F., and Tsuji, A., J. Pharm. Pharmcol., 2001, vol. 53, pp. 497–503.

    Article  CAS  Google Scholar 

  21. Kumagai, A.K., Dwyer, K.J., and Pardridge, W.M., Biochim. Biophys. Acta, 1994, vol. 91, pp. 24–30.

    Google Scholar 

  22. Oldendolf, W.H., Eur. Neurol., 1971, vol. 6, pp. 49–55.

    Article  Google Scholar 

  23. Oldendolf, W.H., Am. J. Physiol. (London), 1973, vol. 224, pp. 1450–1453.

    Google Scholar 

  24. Nemoto, E.M., and Severinghaus, J.W., Stroke, 1997, vol. 5, pp. 81–84.

    Article  Google Scholar 

  25. Kang, Y.S., Terasaki, T., and Tsuji, A., J. Pharmacobiodyn., 1990, vol. 13, pp. 158–163.

    Article  CAS  Google Scholar 

  26. Kusuhara, H., Sekine, T., Utsunomiya-Tate, N., Tsuda, M., et al., J. Biol. Chem., 1999, vol. 274, pp. 13675–13680.

    Article  CAS  Google Scholar 

  27. Tamai, I., Ohashi, R., Nezu, J., Yabuuchi, H., et al., J. Biol. Chem., 1998, vol. 273, pp. 20378–20382.

    Article  CAS  Google Scholar 

  28. Wu, X., Kekuda, R., Huang, W., Fei, Y.-J., et al., J. Biol. Chem., 1998, vol. 273, pp. 32776–32786.

    Article  CAS  Google Scholar 

  29. Banks, W.A., Audus, K., Davis, T.P., Peptides, 1992, vol. 13, pp. 1289–1294.

    Article  CAS  Google Scholar 

  30. Begley, D.J., J. Pharm. Pharmacol., 1996, vol. 48, pp. 136–146.

    Article  CAS  Google Scholar 

  31. Molina-Arcas, M., Casado, F.J., and Pastor-Anglada, M., Curr. Vasc. Pharmacol., 2009, vol. 7, pp. 426–434.

    Article  CAS  Google Scholar 

  32. Bhutia, Y.D., Hung, S.W., Patel, B., Lovin, D., and Govindarajan, R., Cancer Res., 2011, vol. 71, pp. 1825–1835.

    Article  CAS  Google Scholar 

  33. Nagai, K., Nagasawa, K., and Fujimoto, S., Cancer Chemother. Pharmacol., 2005, vol. 55, pp. 222–230.

    Article  CAS  Google Scholar 

  34. Roninson, I.B., in Structure and Evolution of P-Glycoprotein, Roninson, I., Ed., New York: Plenum Press, 1991, pp. 189–209.

  35. Higgins, C.F., Res. Microbiol., 2001, vol. 152, pp. 205–210.

    Article  CAS  Google Scholar 

  36. Bakos, É., Eur. J. Physiol., 2007, vol. 453, pp. 621–641.

    Article  CAS  Google Scholar 

  37. Dean, M., Hamon, Y., and Chimini, G., J. Lipid. Res., 2001, vol. 42, pp. 1007–1017.

    CAS  Google Scholar 

  38. Bakos, E. and Homolya, L., Pflugers. Arch., 2007, vol. 453, pp. 621–641.

    Article  CAS  Google Scholar 

  39. Ramachandra, M., Ambudkar, S.V., Chen, D., et al., Biochemistry, 1998, vol. 37, pp. 5010–5019.

    Article  CAS  Google Scholar 

  40. Lam, F.C., Liu, R., Lu, P., et al., J. Neurochem., 2001, vol. 76, pp. 1121–1128.

    Article  CAS  Google Scholar 

  41. Miller, D.S., Bauer, B., and Hartz, A.M.S., Pharmacol. Rev., 2008, vol. 60, pp. 196–209.

    Article  CAS  Google Scholar 

  42. Bendayan, R., Ronaldson, P.T., Gingras, D., and Bendayan, M., J. Histochem. Cytochem., 2006, vol. 54, pp. 1159–1167.

    Article  CAS  Google Scholar 

  43. Higgins, C.F. and Linton, K.J., Nat. Struct. Mol. Biol., 2004, vol. 11, pp. 918–926.

    Article  CAS  Google Scholar 

  44. Aszalos, A., Drug Discov. Today, 2007, vol. 12, pp. 833–837.

    Article  CAS  Google Scholar 

  45. Rosenberg, M.F., Kamis, A.B., Callaghan, R., Higgins, C.F., and Ford, R.C., J. Biol. Chem., 2003, vol. 278, pp. 8294–8299.

    Article  CAS  Google Scholar 

  46. Rosenberg, M.F., Callaghan, R., Modok, S., Higgins, C.F., and Ford, R.C., J. Biol. Chem., 2005, vol. 280, pp. 2857–2862.

    Article  CAS  Google Scholar 

  47. Aller, S.G., Yu, J., Ward, A., Weng, Y., et al., Science, 2009, vol. 323, pp. 1718–1722.

    Article  CAS  Google Scholar 

  48. Seelig, A. and Landwojtowicz, E., Eur. J. Pharm. Sci., 2000, vol. 12, pp. 31–40.

    Article  CAS  Google Scholar 

  49. Ecker, G., Huber, M., Schmid, D., and Chiba, P., Mol. Pharmacol., 1999, vol. 56, pp. 791–796.

    CAS  Google Scholar 

  50. Lagunin, A.A., Gloriozova, T.A., Dmitriev, A.V., Volgina, N.E., and Poroikov, V.V., Byul. Eksper. Biol. Med., 2012, vol. 154, pp. 520–524.

    Google Scholar 

  51. Torshin, N.A. and Vlasova, V.I., Osnovy fiziologii cheloveka. Uchebnik dlya studentov vuzov, obuchayushchikhsya po meditsinskim i biologicheskim speisial’nostyam (Principles of Human Physiology. Textbook for Students Specialized in Medicine and Biology), 2nd ed., corrected, Moscow: RUDN, 2001.

    Google Scholar 

  52. Desai, M.C., Thadeio, P.F., Lipinski, Chr.A., Liston, D.R., Spencer, R.W., and Williams, I.H., Bioorg. Med. Chem. Lett., 1991, vol. 8, pp. 411–414.

    Article  Google Scholar 

  53. Abraham, M.H., Lieb, W.R., and Franks, N.P., J. Pharm. Sci., 1991, vol. 80, pp. 719–724.

    Article  CAS  Google Scholar 

  54. Abraham, M.H., Chadha, H.S., and Mitchell, R.C., J. Pharm. Sci., 1995, vol. 84, pp. 1257–1268.

    Google Scholar 

  55. Abraham, M.H., Chadha, H.S., and Mitchell, R.C., Drug Des. Discov., 1995, vol. 13, pp. 123–131.

    CAS  Google Scholar 

  56. Abraham, M.H., Takacs-Novak, K., and Mitchell, R.C., J. Pharm. Sci., 1997, vol. 86, pp. 310–315.

    Article  CAS  Google Scholar 

  57. Van de Waterbeemd, H. and Kansy, M., Chimia, 1992, vol. 46, pp. 299–303.

    Google Scholar 

  58. Seelig, A., Gottschlich, R., and Devant, R.M., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 68–72.

    Article  CAS  Google Scholar 

  59. Ter Laak, A.M., Tsai, R.S., Donne-Op den Kelder, G.M., Carrupt, P.A., and Testa, B., Eur. J. Pharm. Sci., 1994, vol. 2, pp. 373–384.

    Article  Google Scholar 

  60. Chikhale, E.G., Ng, K.-Y., Burton, Ph.S., and Borchardt, R.T., Pharm. Res., 1994, vol. 3, pp. 412–419.

    Article  Google Scholar 

  61. Calder, J.A. and Ganellin, C.R., Drug Des. Discov., 1994, vol. 11, pp. 259–268.

    CAS  Google Scholar 

  62. Basak, S.C., Gute, B.D., and Drewes, L.R., Pharm. Res., 1996, vol. 13, pp. 775–778.

    Article  CAS  Google Scholar 

  63. Kai, J., Nakamura, K., Masuda, T., Ueda, I., and Fujiwara, H., J. Med. Chem., 1996, vol. 39, pp. 2621–2624.

    Article  CAS  Google Scholar 

  64. Lombardo, F., Blake, J.F., and Curatolo, W.J., J. Med. Chem., 1996, vol. 39, pp. 4750–4755.

    Article  CAS  Google Scholar 

  65. Young, R.C., Mitchell, R.C., Brown, Th.H., Ganellin, C.R., et al., J. Med. Chem., 1988, vol. 31, pp. 656–671.

    Article  CAS  Google Scholar 

  66. NGoka, V., Schlewer, G., Linget, J.M., et al., J. Med. Chem., 1991, vol. 34, pp. 2547–2557.

    Article  CAS  Google Scholar 

  67. Testa, B. and Seiler, P., Drug Res., 1981, vol. 31, pp. 1053–1058.

    CAS  Google Scholar 

  68. Van de Waterbeemd, H. and Testa, B., Adv. Drug Res., 1987, vol. 16, pp. 85–225.

    Google Scholar 

  69. Tayar, El., Tsai, N., Testa, B., et al., J. Pharm. Sci., 1991, vol. 80, pp. 590–598.

    Article  Google Scholar 

  70. Tayar, El., Testa, N., and Carrupt, P.-A., J. Phys. Chem., 1992, vol. 96, pp. 1455–1459.

    Article  Google Scholar 

  71. Van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J.R., and Raevsky, O.A., J. Drug Targeting, 1998, vol. 6, pp. 151–165.

    Article  Google Scholar 

  72. Leo, A., Hansch, C., and Elkins, D., Chem. Rev., 1971, vol. 71, pp. 525–616.

    Article  CAS  Google Scholar 

  73. Camenisch, G., Folkers, G., and Van de Waterbeemd, H., Pharm. Acra Helv., 1996, vol. 71, pp. 309–327.

    Article  CAS  Google Scholar 

  74. Van de Waterbeemd, H., Kansy, M., Wagner, B., and Fischer, H., in Lipophilicity in Drug Action and Toxicology, Pliska, V., Testa, B., and Van de Waterbeemd, H., Eds., Weinheim: VCH, 1996.

    Google Scholar 

  75. Xiang, T.X. and Anderson, B.D., J. Membr. Biol., 1994, vol. 140, pp. 111–122.

    CAS  Google Scholar 

  76. Abraham, M.H., et al., J. Pharm. Sci., 1994, vol. 83, pp. 1257–1268.

    Article  CAS  Google Scholar 

  77. Luco, J.M., J. Chem. Inf. Comput. Sci., 1999, vol. 39, pp. 396–404.

    Article  CAS  Google Scholar 

  78. Clark, D.E., J. Pharm. Sci., 1999, vol. 88, pp. 815–821.

    Article  CAS  Google Scholar 

  79. Abraham, M.H., Ibrahim, A., Zhao, Y., and Acree, W., Eur. J. Pharm. Sci., 2006, vol. 95, pp. 2091–2100.

    Article  CAS  Google Scholar 

  80. Subramanian, G. and Kitchen, D.B., J. Comp.-Aided Mol. Design, 2003, vol. 17, pp. 643–664.

    Article  CAS  Google Scholar 

  81. Sun, H., J. Chem. Inf. Comput. Sci., 2004, vol. 44, pp. 748–757.

    Article  CAS  Google Scholar 

  82. Adenot, M. and Lahana, R., J. Chem. Inf. Comput. Sci., 2004, vol. 44, pp. 239–248.

    Article  CAS  Google Scholar 

  83. Liu, X. and Ma, P.X., Drug Metab. Dispos., 2004, vol. 32, pp. 132–139.

    Article  CAS  Google Scholar 

  84. Cabrera, M.A., Bermejo, M., Perez, M., and Ramos, R.J., Pharm. Sci., 2004, vol. 93, pp. 1701–1717.

    Article  CAS  Google Scholar 

  85. Mensch, J., Oyarzabal, J., Mackie, C., and Augustijns, P., J. Pharm. Sci., 2009, vol. 98, pp. 4429–4468.

    Article  CAS  Google Scholar 

  86. Mehdipour, A.R. and Hamidi, M., Drug Discovery Today, 2009, vol. 14, pp. 1030–1036.

    Article  CAS  Google Scholar 

  87. Zhang, L., Zhu, H., Oprea, T.I., Golbraikh, A., and Tropsha, A., Pharm. Res., 2008, vol. 25, pp. 1902–1914.

    Article  CAS  Google Scholar 

  88. Zhao, Y.H., Abraham, M.H., et al., J. Chem. Inf. Model., 2007, vol. 47, pp. 170–175.

    Article  CAS  Google Scholar 

  89. Li, H., Yap, C.W., Ung, C.Y., Xue, Y., et al., J. Chem. Inf. Model., 2005, vol. 45, pp. 1376–1384.

    Article  CAS  Google Scholar 

  90. Al-Fahemi J.H.A., Cooper D.L., and Allan, N.L., J. Mol. Graph. Model., 2007, vol. 26, pp. 607–612.

    Article  CAS  Google Scholar 

  91. Cuadrado, M.U., Ruiz, I.L., An’gel, M., J. Comput. Chem., 2007, vol. 28, pp. 1252–1260.

    Article  CAS  Google Scholar 

  92. Wichmann, K., et al., J. Chem. Inf. Model., 2007, vol. 47, pp. 228–233.

    Article  CAS  Google Scholar 

  93. Konovalov, D.A., et al. J. Chem. Inf. Model., 2007, vol. 47, pp. 1648–1656.

    Article  CAS  Google Scholar 

  94. Obrezanova, O., Csan’yi, G., Gola, J.M.R., and Segall, M.D., J. Chem. Inf. Model., 2007, vol. 47, pp. 1847–1857.

    Article  CAS  Google Scholar 

  95. Wan, H., et al., J. Med Chem., 2007, vol. 50, pp. 4606–4615.

    Article  CAS  Google Scholar 

  96. Obrezanova, O., et al., J. Comput. Aided Mol., 2008, vol. 22, pp. 431–440.

    Article  CAS  Google Scholar 

  97. Kortagere, S., Chekmarev, D., Welsh, W.J., and Ekins, S., Pharmac. Res., 2008, vol. 25, pp. 1836–1845.

    Article  CAS  Google Scholar 

  98. Guerra, A., Paéz, J.A., and Campillo, N.E., QSAR Comb. Sci., 2008, vol. 27, pp. 586–594.

    Article  CAS  Google Scholar 

  99. Fu, X.-C., Wang, G.-P., Shan, H.-L., et al., Eur. J. Pharmac. Biopharmac., 2008, vol. 70, pp. 462–466.

    Article  CAS  Google Scholar 

  100. Van Damme, S., Langenaeker, W., and Bultinck, P., J. Mol. Graph. Model., 2008, vol. 26, pp. 1223–1236.

    Article  CAS  Google Scholar 

  101. Shen, J., Dub, Y., Zhaoa, Y., Liua, G., and Tanga, Y., QSAR Comb. Sci., 2008, vol. 27, pp. 704–717.

    Article  CAS  Google Scholar 

  102. Konovalov, D.A., Sim, N., Deconinck, E., et al., J. Chem. Inf. Model., 2008, vol. 48, pp. 370–383.

    Article  CAS  Google Scholar 

  103. Karelson, M., et al., ARKIVOC, 2008, pp. 38–60.

    Google Scholar 

  104. Lanevskij, K., Japertasa, P., Didziapetrisa, R., and Petrauskasa, A., Chemistry Biodiversity, 2009, vol. 6, pp. 2050–2054.

    Article  CAS  Google Scholar 

  105. Guo, Q., Brady, M., and Gunn, R.N., J. Nucl. Med., 2009, vol. 50, pp. 1715–1723.

    Article  CAS  Google Scholar 

  106. Chen, Y., Zhub, Q.-J., Pana, J., Yanga, Y., and Wuc, X.-P., Computer Methods and Programs in Biomedicine, 2009, vol. 95, pp. 280–287.

    Article  Google Scholar 

  107. Wang, Z., Yan, A., and Yuan, Q., QSAR Comb. Sci., 2009, vol. 28, pp. 989–994.

    Article  CAS  Google Scholar 

  108. Varnek, A., Gaudin, C., Marcou, G., et al., J. Chem. Inf. Model., 2009, vol. 49, pp. 133–144.

    Article  CAS  Google Scholar 

  109. Friden, M., Winiwarter, S., Jerndal, G., Bengtsson, O., and Wan, H., J. Med. Chem., 2009, vol. 52, pp. 6233–6243.

    Article  CAS  Google Scholar 

  110. Di, L., Kerns, E.H., Bezar, I.F., Petusky, S.L., and Huangdi, Y., J. Pharm. Sciences, 2009, vol. 98, pp. 1980–1991.

    Article  CAS  Google Scholar 

  111. Petereit, A.C., Swinney, K., Mensch, J., Mackie, C., Stokbroekx, S., Brewster, M., and Dressman, J.B., Eur. J. Pharm. Biopharm., 2010, vol. 75, pp. 405–410.

    Article  CAS  Google Scholar 

  112. Sá, M.M., Pasqualoto, K.F.M., and Rangel-Yagui, C.O., Braz. J. Pharm. Sci., 2010, vol. 46, pp. 741–751.

    Google Scholar 

  113. Shen, J., Cheng, F., Xu, Y., Li, W., and Tang, Y., J. Chem. Inf. Model., 2010, vol. 50, pp. 1034–1041.

    Article  CAS  Google Scholar 

  114. Obrezanova, O. and Segall, M.D., J. Chem. Inf. Model., 2010, vol. 50, pp. 1053–1061.

    Article  CAS  Google Scholar 

  115. Fan, Y., J. Chem. Inf. Model., 2010, vol. 50, pp. 1123–1133.

    Article  CAS  Google Scholar 

  116. Abraham, M., et al., J. Pharm. Sci., 2010, vol. 99, pp. 2492–2501.

    Article  CAS  Google Scholar 

  117. Mensch, J., et al., Int. J. Pharmac., 2010, vol. 395, pp. 182–197.

    Article  CAS  Google Scholar 

  118. Mabondzo, A., Bottlaender, M., Guyot, A.-C., Tsaouin, K., Robert Deverre, J., and Balimane, P.V., Mol. Pharmaceutics, 2010, vol. 7, pp. 1805–1815.

    Article  CAS  Google Scholar 

  119. Tsinman, O., Tsinman, K., Sun, N., and Avdeef, A., Pharm. Res., 2011, vol. 28, pp. 337–363.

    Article  CAS  Google Scholar 

  120. Chen, H., et al., J. Mol. Graph. Model., 2011, vol. 29, pp. 985–995.

    Article  CAS  Google Scholar 

  121. The, H.P., et al., Mol. Inf., 2011, vol. 30, pp. 376–385.

    Article  CAS  Google Scholar 

  122. Lacombe, O., Videau, O., Chevillon, D., Guyot, A.-C., et al., Mol. Pharmaceutics, 2011, vol. 8, pp. 651–663.

    Article  CAS  Google Scholar 

  123. Raevsky, O.A., Solodova, S.L., Raevskaya, O.E., Liplavskiy, Y.V., and Mannhold, R., Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2012, vol. 6, pp. 31–38.

    Article  Google Scholar 

  124. Lipinski, C.A., Drugs structure and properties, past and present. Can we design drugs with beautiful properties?, http://www.iainm.demon.co.uk/spring99/lipins-n.pdf

  125. Hughes, J.D., et al., Bioorg. Med. Chem. Lett., 2008, vol. 18, pp. 4872–4875.

    Article  CAS  Google Scholar 

  126. Zhang, H., J. Pharm. Sci., 2004, vol. 93, pp. 1595–1604.

    Article  CAS  Google Scholar 

  127. Crivori, P., Reinach, B., Pezzetta, D., and Poggesi, I., Mol. Pharm., 2006, vol. 3, pp. 33–44.

    Article  CAS  Google Scholar 

  128. Volsurf, version 4.0; available from Molecular Discovery Ltd., London, U.K. (www.moldiscovery.com).

  129. GRID, version 22; available from Molecular Discovery Ltd., London, U.K. (www.moldiscovery.com).

  130. Cianchetta, G., Singleton, R.W., Zhang, M., Wildgoose, M., Giesing, D., Fravolini, A., Cruciani, G., and Vaz, R.J., J. Med. Chem., 2005, vol. 48, pp. 2927–2935.

    Article  CAS  Google Scholar 

  131. CORINA, version 3.2; available from Molecular Networks, GmbH, Computerchemie, Erlangen, Germany (www.mol-net.de).

  132. Seelig, A., Eur. J. Biochem., 1998, vol. 251, pp. 252–261.

    Article  CAS  Google Scholar 

  133. Bikadi, Z., Hazai, I., Malik, D., Jemnitz, K., Veres, Z., et al., PLoS ONE, 2011, vol. 6, no 10, p. e25815.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Raevsky.

Additional information

Original Russian Text © O.A. Raevsky, S.L. Solodova, A.A. Lagunin, V.V. Poroikov, 2013, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raevsky, O.A., Solodova, S.L., Lagunin, A.A. et al. Computer modeling of blood brain barrier permeability for physiologically active compounds. Biochem. Moscow Suppl. Ser. B 7, 95–107 (2013). https://doi.org/10.1134/S199075081302008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199075081302008X

Keywords

Navigation