Skip to main content

Advertisement

Log in

QSAR Modeling of the Blood–Brain Barrier Permeability for Diverse Organic Compounds

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Development of externally predictive Quantitative Structure–Activity Relationship (QSAR) models for Blood–Brain Barrier (BBB) permeability.

Methods

Combinatorial QSAR analysis was carried out for a set of 159 compounds with known BBB permeability data. All six possible combinations of three collections of descriptors derived from two-dimensional representations of molecules as chemical graphs and two QSAR methodologies have been explored. Descriptors were calculated by MolconnZ, MOE, and Dragon software. QSAR methodologies included k-Nearest Neighbors and Support Vector Machine approaches. All models have been rigorously validated using both internal and external validation methods.

Results

The consensus prediction for the external evaluation set afforded high predictive power (R 2 = 0.80 for 10 compounds within the applicability domain after excluding one activity outlier). Classification accuracies for two additional external datasets, including 99 drugs and 267 organic compounds, classified as permeable (BBB+) or non-permeable (BBB−) were 82.5% and 59.0%, respectively. The use of a fairly conservative model applicability domain increased the prediction accuracy to 100% and 83%, respectively (while naturally reducing the dataset coverage to 60% and 43%, respectively). Important descriptors that affect BBB permeability are discussed.

Conclusion

Models developed in these studies can be used to estimate the BBB permeability of drug candidates at early stages of drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

applicability domain

BBB:

blood–brain barrier

Combi-QSAR:

combinatorial QSAR

kNN:

k-nearest neighbors

MAE:

mean absolute error

NIH:

National Institutes of Health

OECD:

Organization for Economic Co-operation and Development

QSAR:

quantitative structure–activity relationship

SVM:

support vector machines

References

  1. P. L. Golden, and G. M. Pollack. Blood–brain barrier efflux transport. J. Pharm. Sci. 92:1739–1753 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. U. Bickel, T. Yoshikawa, and W. M. Pardridge. Delivery of peptides and proteins through the blood–brain barrier. Adv. Drug Deliv. Rev. 46:247–279 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. C. L. Graff, and G. M. Pollack. Drug transport at the blood–brain barrier and the choroid plexus. Curr. Drug Metab. 5:95–108 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. R. C. Young, R. C. Mitchell, T. H. Brown, C. R. Ganellin, R. Griffiths, M. Jones, K. K. Rana, D. Saunders, I. R. Smith, N. E. Sore, and T. J. Wilks. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J. Med. Chem. 31:656–671 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. M. H. Abraham, H. S. Chadha, and R. C. Mitchell. Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. J. Pharm. Sci. 83:1257–1268 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. M. H. Abraham, H. S. Chadha, and R. C. Mitchell. Hydrogen-bonding. Part 36. Determination of blood brain distribution using octanol–water partition coefficients. Drug Des. Discov. 13:123–131 (1995).

    PubMed  CAS  Google Scholar 

  7. F. Lombardo, J. F. Blake, and W. J. Curatolo. Computation of brain–blood partitioning of organic solutes via free energy calculations. J. Med. Chem. 39:4750–4755 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. G. Subramanian, and D. B. Kitchen. Computational models to predict blood–brain barrier permeation and CNS activity. J. Comput. Aided Mol. Des. 17:643–664 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. D. E. Clark. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J. Pharm. Sci. 88:815–821 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. J. M. Luco. Prediction of the brain–blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J. Chem. Inf. Comput. Sci. 39:396–404 (1999).

    PubMed  CAS  Google Scholar 

  11. M. Feher, E. Sourial, and J. M. Schmidt. A simple model for the prediction of blood–brain partitioning. Int. J. Pharm. 201:239–247 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. J. Kelder, P. D. Grootenhuis, D. M. Bayada, L. P. Delbressine, and J. P. Ploemen. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res. 16:1514–1519 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. M. E. Brewster, E. Pop, M. J. Huang, and N. Bodor. AM1-based model system for estimation of brain/blood concentration ratios. Int. J. Quantum Chem. 60:51–63 (1996).

    Article  CAS  Google Scholar 

  14. U. Norinder, P. Sjoberg, and T. Osterberg. Theoretical calculation and prediction of brain–blood partitioning of organic solutes using MolSurf parametrization and PLS statistics. J. Pharm. Sci. 87:952–959 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. A. Tropsha, P. Gramatica, and V. K. Gombar. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR Models. QSAR Comb. Sci. 22:69–77 (2003).

    Article  CAS  Google Scholar 

  16. H. Kubinyi, F. A. Hamprecht, and T. Mietzner. Three-dimensional quantitative similarity–activity relationships (3D QSiAR) from SEAL similarity matrices. J. Med. Chem. 41:2553–2564 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. A. Golbraikh, and A. Tropsha. Beware of q2!. J. Mol. Graph. Model. 20:269–276 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. M. Vracko, V. Bandelj, P. Barbieri, E. Benfenati, Q. Chaudhry, M. Cronin, J. Devillers, A. Gallegos, G. Gini, P. Gramatica, C. Helma, P. Mazzatorta, D. Neagu, T. Netzeva, M. Pavan, G. Patlewicz, M. Randic, I. Tsakovska, and A. Worth. Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: A case study. SAR QSAR Environ. Res. 17:265–284 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. L. P. de Cerqueira, A. Golbraikh, S. Oloff, Y. Xiao, and A. Tropsha. Combinatorial QSAR modeling of P-glycoprotein substrates. J. Chem. Inf. Model. 46:1245–1254 (2006).

    Article  CAS  Google Scholar 

  20. A. Kovatcheva, A. Golbraikh, S. Oloff, Y. D. Xiao, W. Zheng, P. Wolschann, G. Buchbauer, and A. Tropsha. Combinatorial QSAR of ambergris fragrance compounds. J. Chem. Inf. Comput. Sci. 44:582–595 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. A. Kovatcheva, A. Golbraikh, S. Oloff, J. Feng, W. Zheng, and A. Tropsha. QSAR modeling of datasets with enantioselective compounds using chirality sensitive molecular descriptors. SAR QSAR Environ. Res. 16:93–102 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. B. Hemmateenejad, R. Miri, M. A. Safarpour, and A. R. Mehdipour. Accurate prediction of the blood–brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling. J. Comput. Chem. 27:1125–1135 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. U. Norinder, and M. Haeberlein. Computational approaches to the prediction of the blood–brain distribution. Adv. Drug Deliv. Rev. 54:291–313 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. J. A. Platts, M. H. Abraham, Y. H. Zhao, A. Hersey, L. Ijaz, and D. Butina. Correlation and prediction of a large blood–brain distribution data set—an LFER study. Eur. J. Med. Chem. 36:719–730 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. A. Golbraikh, M. Shen, Z. Xiao, Y. D. Xiao, K. H. Lee, and A. Tropsha. Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aided Mol. Des. 17:241–253 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. M. Olah, M. Mracec, L. Ostopovici, R. Rad, A. Bora, N. Hadaruga, I. Olah, M. Banda, Z. Simon, M. Mracec, and Y. I. Oprea. WOMBAT: World of Molecular Bioactivity, in chemoinformatics in drug discovery. Wiley-VCH, New York, 2004.

    Google Scholar 

  27. H. Li, C. W. Yap, C. Y. Ung, Y. Xue, Z. W. Cao, and Y. Z. Chen. Effect of selection of molecular descriptors on the prediction of blood–brain barrier penetrating and nonpenetrating agents by statistical learning methods. J. Chem. Inf. Model. 45:1376–1384 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. L. B. Kier, and L. H. Hall. Molecular connectivity in structure–activity analysis. Wiley, New York, 1986.

    Google Scholar 

  29. L. B. Kier, and L. H. Hall. Molecular connectivity in chemistry and drug research. Academic Press, New York, 1976.

    Google Scholar 

  30. M. Randic. Characterization of molecular branching. J. Am. Chem. Soc. 97:6609–6615 (1975).

    Article  CAS  Google Scholar 

  31. L. B. Kier. A Shape index from molecular graphs. Quant. Struct.—Act. Relat. 4:109–116 (1985).

    Article  CAS  Google Scholar 

  32. L. B. Kier. Inclusion of symmetry as a shape attribute in Kappa-Index analysis. Quant. Struct.—Act. Relatsh. 6:8–12 (1987).

    Article  CAS  Google Scholar 

  33. L. H. Hall, and L. B. Kier. Determination of topological equivalence in molecular graphs from the topological state. Quant. Struct.—Act. Relat. 9:115–131 (1990).

    Article  CAS  Google Scholar 

  34. L. H. Hall, B. K. Mohney, and L. B. Kier. The electrotopological state: An atom index for QSAR. Quant. Struct.—Act. Relat. 10:43–51 (1991).

    Article  CAS  Google Scholar 

  35. L. H. Hall, B. K. Mohney, and L. B. Kier. The electrotopological state: Structure information at the atomic level for molecular graphs. J. Chem. Inf. Comput. Sci. 31:76–82 (1991).

    CAS  Google Scholar 

  36. G. E. Kellogg, L. B. Kier, P. Gaillard, and L. H. Hall. E-state fields: Applications to 3D QSAR. J. Comput. Aided Mol. Des. 10:513–520 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. L. B. Kier, and L. H. Hall. Molecular structure description: The electrotopological state. Academic Press, New York, 1999.

    Google Scholar 

  38. L. B. Kier, and L. H. Hall. A differential molecular connectivity index. Quant. Struct.—Act. Relat. 10:134–140 (1991).

    Article  CAS  Google Scholar 

  39. M. Petitjean. Applications of the radius–diameter diagram to the classification of topological and geometrical shapes of chemical compounds. J. Chem. Inf. Comput. Sci. 32:331–337 (1992).

    CAS  Google Scholar 

  40. H. J. Wiener. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69:17–20 (1947).

    Article  CAS  Google Scholar 

  41. J. R. Platt. Influence of neighbor bonds on additive bond properties in paraffins. J. Chem. Phys. 15:419–420 (1947).

    Article  CAS  Google Scholar 

  42. C. Shannon, and W. Weaver. In mathematical theory of communication. University of Illinois, Urbana, Illinois, 1949.

    Google Scholar 

  43. D. Bonchev, O. Mekenyan, and N. Trinajstic. Isomer discrimination by topological information approach. J. Comput. Chem. 2:127–148 (1981).

    Article  CAS  Google Scholar 

  44. A. T. Balaban. Five new topological indices for the branching of tree-like graphs. Theor. Chim. Acta. 53:355–375 (1979).

    Article  CAS  Google Scholar 

  45. A. T. Balaban. Highly discriminating distance-based topological index. Chem. Phys. Lett. 89:399–404 (1982).

    Article  CAS  Google Scholar 

  46. Talete s.r.l. Dragon. [5.4.2006]. 2007. Milan (Italy).

  47. R. Todeschini, and V. Consonni. Handbook of molecular descriptors. Wiley, Weinheim (Germany), 2000.

    Google Scholar 

  48. W. Zheng, and A. Tropsha. Novel variable selection quantitative structure–property relationship approach based on the k-nearest-neighbor principle. J. Chem. Inf. Comput. Sci. 40:185–194 (2000).

    Article  PubMed  CAS  Google Scholar 

  49. V. N. Vapnik. In the nature of statistical learning theory. Springer, New York, 2000.

    Google Scholar 

  50. J. R. Votano, M. Parham, L. M. Hall, L. H. Hall, L. B. Kier, S. Oloff, and A. Tropsha. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. J. Med. Chem. 49:7169–7181 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. A. Tropsha, and A. Golbraikh. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Des. 13:3494–3504 (2007).

    Article  PubMed  CAS  Google Scholar 

  52. M. Shen, C. Beguin, A. Golbraikh, J. P. Stables, H. Kohn, and A. Tropsha. Application of predictive QSAR models to database mining: Identification and experimental validation of novel anticonvulsant compounds. J. Med. Chem. 47:2356–2364 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. L. Sachs. Applied statistics: A handbook of techniques. Springer, New York, 1984.

    Google Scholar 

  54. K. M. Mahar Doan, J. E. Humphreys, L. O. Webster, S. A. Wring, L. J. Shampine, C. J. Serabjit-Singh, K. K. Adkison, and J. W. Polli. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J. Pharmacol. Exp. Ther. 303:1029–1037 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. G. J. Durant, J. M. Loynes, and H. B. Wright. Potential histamine H2-receptor autagonists. 1. Aminoethylimidayo(1,2-a)pyridines and -imidayo(1,5-a)pyridines. J. Med. Chem. 16:1272–1276 (1973).

    Article  PubMed  CAS  Google Scholar 

  56. P. D. Hansten, and R. H. Levy. Role of P-glycoprotein and organic anion transporting polypeptides in drug absorption and distribution—Focus on H-1-receptor antagonists. Clin. Drug Investig. 21:587–596 (2001).

    Article  CAS  Google Scholar 

  57. H. Zhu, A. Tropsha, D. Fourches, A. Varnek, E. Papa, P. Gramatica, T. Oberg, P. Dao, A. Cherkasov, and I. V. Tetko. Combinatorial QSAR modeling of chemical toxicants tested against tetrahymena pyriformis. J. Chem. Inf. Model. in press (2008).

  58. M. Iyer, R. Mishru, Y. Han, and A. J. Hopfinger. Predicting blood–brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm. Res. 19:1611–1621 (2002).

    Article  PubMed  CAS  Google Scholar 

  59. W. H. van de, G. Camenisch, G. Folkers, J. R. Chretien, and O. A. Raevsky. Estimation of blood–brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target. 6:151–165 (1998).

    Article  Google Scholar 

  60. K. Rose, L. H. Hall, and L. B. Kier. Modeling blood–brain barrier partitioning using the electrotopological state. J. Chem. Inf. Comput. Sci. 42:651–666 (2002).

    Article  PubMed  CAS  Google Scholar 

  61. J. R. Votano, M. Parham, L. H. Hall, L. B. Kier, S. Oloff, A. Tropsha, Q. Xie, and W. Tong. Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis. 19:365–377 (2004).

    Article  PubMed  CAS  Google Scholar 

  62. L. H. Hall, and L. B. Kier. MDL QSAR modeling blood–brain barrier partitioning. http://www.mdl.com/products/pdfs/MDLQSARreprint.pdf. 2002.

  63. T. R. Stouch, and O. Gudmundsson. Progress in understanding the structure–activity relationships of P-glycoprotein. Adv. Drug Deliv. Rev. 54:315–328 (2002).

    Article  PubMed  CAS  Google Scholar 

  64. P. Labute. A widely applicable set of descriptors. J. Mol. Graphics Modell. 18:464–477 (2000).

    Article  CAS  Google Scholar 

  65. T. Litman, T. Zeuthen, T. Skovsgaard, and W. D. Stein. Structure–activity relationships of P-glycoprotein interacting drugs: Kinetic characterization of their effects on ATPase activity. Biochim. Biophys. Acta. 1361:159–168 (1997).

    PubMed  CAS  Google Scholar 

  66. T. Suzuki, N. Fukazawa, K. San nohe, W. Sato, O. Yano, and T. Tsuruo. Structure–activity relationship of newly synthesized quinoline derivatives for reversal of multidrug resistance in cancer. J. Med. Chem. 40:2047–2052 (1997).

    Article  PubMed  CAS  Google Scholar 

  67. G. M. Keseru, and L. Molnar. High-throughput prediction of blood–brain partitioning: a thermodynamic approach. J. Chem. Inf. Comput. Sci. 41:120–128 (2001).

    Article  PubMed  CAS  Google Scholar 

  68. T. Salminen, A. Pulli, and J. Taskinen. Relationship between immobilised artificial membrane chromatographic retention and the brain penetration of structurally diverse drugs. J. Pharm. Biomed. Anal. 15:469–477 (1997).

    Article  PubMed  CAS  Google Scholar 

  69. X. L. Ma, C. Chen, and J. Yang. Predictive model of blood–brain barrier penetration of organic compounds. Acta Pharmacol. Sin. 26:500–512 (2005).

    Article  PubMed  CAS  Google Scholar 

  70. A. R. Katritzky, M. Kuanar, S. Slavov, D. A. Dobchev, D. C. Fara, M. Karelson, W. E. Acree Jr., V. P. Solov’ev, and A. Varnek. Correlation of blood–brain penetration using structural descriptors. Bioorg. Med. Chem. 14:4888–4917 (2006).

    Article  PubMed  CAS  Google Scholar 

  71. T. J. Hou, and X. J. Xu. ADME evaluation in drug discovery. 3. Modeling blood–brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci. 43:2137–2152 (2003).

    Article  PubMed  CAS  Google Scholar 

  72. D. Pan, M. Iyer, J. Liu, Y. Li, and A. J. Hopfinger. Constructing optimum blood brain barrier QSAR models using a combination of 4D-molecular similarity measures and cluster analysis. J. Chem. Inf. Comput. Sci. 44:2083–2098 (2004).

    Article  PubMed  CAS  Google Scholar 

  73. D. A. Winkler, and F. R. Burden. Modelling blood–brain barrier partitioning using Bayesian neural nets. J. Mol. Graph. Model. 22:499–505 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Scott Oloff for his implementation of the SVM approach that was used in this study. We also thank Dr. J. Grier for his critical comments and his help with editing this manuscript. The studies reported in this paper have been supported by the NIH RoadMap grant GM076059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tropsha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Materials (DOC 743 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhu, H., Oprea, T.I. et al. QSAR Modeling of the Blood–Brain Barrier Permeability for Diverse Organic Compounds. Pharm Res 25, 1902–1914 (2008). https://doi.org/10.1007/s11095-008-9609-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9609-0

KEY WORDS

Navigation