Skip to main content
Log in

Kinematics of the Scorpius-Centaurus OB association

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

A fine structure related to the kinematic peculiarities of three components of the Scorpius-Centaurus association (LCC, UCL, and US) has been revealed in the UV-velocity distribution of Gould Belt stars. We have been able to identify the most likely members of these groups by applying the method of analyzing the two-dimensional probability density function of stellar UV velocities that we developed. A kinematic analysis of the identified structural components has shown that, in general, the center-of-mass motion of the LCC, UCL, and US groups follows the motion characteristic of the Gould Belt, notably its expansion. The entire Scorpius-Centaurus complex is shown to possess a proper expansion with an angular velocity parameter of 46 ± 8 km s−1 kpc−1 for the kinematic center with l 0 = −40° and R 0 = 110 pc found. Based on this velocity, we have estimated the characteristic expansion time of the complex to be 21 ± 4 Myr. The proper rotation velocity of the Scorpius-Centaurus complex is lower in magnitude, is determined less reliably, and depends markedly on the data quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Ambartsumyan, Stellar Evolution and Astrophysics (AN Arm. SSR, Yerevan, 1947) [in Russian].

    Google Scholar 

  2. V. A. Ambartsumyan, Astron. Zh. 26, 3 (1949).

    Google Scholar 

  3. D. Barrado y Navascuées, J. R. Stauffer, et al., Astrophys. J. 520, L123 (1999).

    Article  ADS  Google Scholar 

  4. A. Blaauw, Bull. Astron. Inst. Netherland 11, 414(1952).

    ADS  Google Scholar 

  5. A. Blaauw, Ann. Rev. Astron. Astrophys. 2, 213(1964).

    Article  ADS  Google Scholar 

  6. A. Blaauw, The Physics of Star Formation and Early Stellar Evolution, Ed. by C. J. Lada and N. D. Kylafis (Kluwer, Dordrecht, 1991).

    Google Scholar 

  7. V. V. Bobylev, Pis’ma Astron. Zh. 30, 185 (2004a) [Astron. Lett. 30, 159 (2004a)].

    Google Scholar 

  8. V. V. Bobylev, Pis’ma Astron. Zh. 30, 861 (2004b) [Astron. Lett. 30, 848 (2004b)].

    Google Scholar 

  9. V. V. Bobylev, Pis’ma Astron. Zh. 32, 906 (2006) [Astron. Lett. 32, 816 (2006)].

    Google Scholar 

  10. V. V. Bobylev, G. A. Gontcharov, and A. T. Bajkova, Astron. Zh. 83, 821 (2006) [Astron. Rep. 50, 733 (2006)].

    Google Scholar 

  11. D. Breitschwerdt and M. A. Avillez, Astron. Astrophys. 452, L1 (2006).

    Article  ADS  Google Scholar 

  12. J. H. J. de Bruijne, Mon. Not. R. Astron. Soc. 310, 585 (1999).

    Article  ADS  Google Scholar 

  13. W. J. B. Corradi, G. A. P. Franco, and J. Knude, Mon. Not. R. Astron. Soc. 347, 1065 (2004).

    Article  ADS  Google Scholar 

  14. D. Dravins, L. Lindegren, and S. Madsen, Astron. Astrophys. 348, 1040 (1999).

    ADS  Google Scholar 

  15. D. Fernández, F. Figueras, and J. Torra, astroph/0611766 (2006).

  16. B. Fuchs, D. Breitschwerdt, M. A. Avilez, et al., Mon. Not. R. Astron. Soc. 373, 993 (2006).

    Article  ADS  Google Scholar 

  17. E. J. de Geus, P. T. de Zeeuw, and J. Lub, Astron. Astrophys. 216, 44 (1989).

    ADS  Google Scholar 

  18. G. A. Gontcharov, Pis’ma Astron. Zh. 32, 844 (2006) [Astron. Lett. 32, 759 (2006)].

    Google Scholar 

  19. E. Jilinski, S. Duflon, K. Cunha, et al., Astron. Astrophys. 448, 1001 (2006).

    Article  ADS  Google Scholar 

  20. J. R. D. Lépine and G. Duvert, Astron. Astrophys. 286, 60 (1994).

    ADS  Google Scholar 

  21. P. O. Lindblad, Astron. Astrophys. 363, 154 (2000).

    ADS  Google Scholar 

  22. P. O. Lindblad, P. O. Grape, K. Sandqvist, et al., Astron. Astrophys. 24, 309 (1973).

    ADS  Google Scholar 

  23. L. Lindegren, S. Madsen, and D. Dravins, Astron. Astrophys. 356, 1119 (2000).

    ADS  Google Scholar 

  24. K. L. Luhman, Astrophys. J. 560, 287 (2001).

    Article  ADS  Google Scholar 

  25. T. E. Lutz and D. H. Kelker, Publ. Astron. Soc. Pac. 85, 573 (1973).

    Article  ADS  Google Scholar 

  26. S. Madsen, D. Dravins, and L. Lindegren, Astron. Astrophys. 381, 446 (2002).

    Article  ADS  Google Scholar 

  27. V. V. Makarov, Astron. J. 126, 1996 (2003).

    Article  ADS  Google Scholar 

  28. E. E. Mamajek, Astrophys. J. 634, 1385 (2005).

    Article  ADS  Google Scholar 

  29. E. E. Mamajek and E. D. Feigelson, Astron. Soc. Pac. Conf. Ser. 244, 104 (2001).

    ADS  Google Scholar 

  30. E. E. Mamajek, W. A. Lawson, and E. D. Feigelson, Astrophys. J. 516, L77 (1999).

    Article  ADS  Google Scholar 

  31. E. E. Mamajek, W. A. Lawson, and E. D. Feigelson, Astrophys. J. 544, 356 (2000).

    Article  ADS  Google Scholar 

  32. E. E. Mamajek, M. Meyer, and J. Liebert, Astron. J. 124, 1670 (2002).

    Article  ADS  Google Scholar 

  33. A. M. Mel’nik, A. K. Dambis, and A. S. Rastorguev, Pis’ma Astron. Zh. 27, 611 (2001) [Astron. Lett. 27, 521 (2001)].

    Google Scholar 

  34. C. A. Murray, Vectorial Astrometry (Adam Hilger, Bristol, 1983; Naukova Dumka, Kiev, 1986).

    Google Scholar 

  35. K. F. Ogorodnikov, Dynamics of Stellar Systems (Pergamon, Oxford, 1965; Fizmatgiz, Moscow, 1965).

    MATH  Google Scholar 

  36. C. A. Olano, Astron. Astrophys. 112, 195 (1982).

    ADS  Google Scholar 

  37. A. E. Piskunov, N. V. Kharchenko, S. R öser, et al., Astron. Astrophys. 445, 545 (2006).

    Article  ADS  Google Scholar 

  38. M. E. Popova and A. V. Loktin, Pis’ma Astron. Zh. 31, 743 (2005) [Astron. Lett. 31, 663 (2005)].

    Google Scholar 

  39. T. Preibisch and H. Zinnecker, Astron. J. 117, 2381 (1999).

    Article  ADS  Google Scholar 

  40. M. J. Sartori, J. R. D. Lépine, and W. S. Dias, Astron. Astrophys. 404, 913 (2003).

    Article  ADS  Google Scholar 

  41. G. Schaller, D. Schaerer, G. Meynet, et al., Astron. Astrophys., Suppl. Ser. 96, 269 (1992).

    ADS  Google Scholar 

  42. J. Skuljan, J. B. Hearnshaw, and P. L. Cottrell, Mon. Not. R. Astron. Soc. 308, 731 (1999).

    Article  ADS  Google Scholar 

  43. I. Song, B. Zuckermann, and M. S. Bessel, Astrophys. J. 599, 342 (2003).

    Article  ADS  Google Scholar 

  44. The Hipparcos and Tycho Catalogues, ESA SP-1200 (1997).

  45. C. A. O. Torres, L. da Silva, G. R. Quast, et al., Astron. J. 120, 1410 (2000).

    Article  ADS  Google Scholar 

  46. C. A. O. Torres, G. R. Quast, L. da Silva, et al., Astron. Astrophys. 460, 695 (2006).

    Article  ADS  Google Scholar 

  47. R. Wichmann, J. H. M. M. Schmitt, and S. Hubrig, Astron. Astrophys. 399, 983 (2003).

    Article  ADS  Google Scholar 

  48. P. T. de Zeeuw, R. Hoogerwerf, J. H. J. de Bruijne, et al., Astron. J. 117, 354 (1999).

    Article  ADS  Google Scholar 

  49. B. Zuckerman, I. Song, and R. A. Webb, Astrophys. J. 559, 388 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bobylev.

Additional information

Original Russian Text © V.V. Bobylev, A.T. Bajkova, 2007, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2007, Vol. 33, No. 9, pp. 643–656.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobylev, V.V., Bajkova, A.T. Kinematics of the Scorpius-Centaurus OB association. Astron. Lett. 33, 571–583 (2007). https://doi.org/10.1134/S1063773707090010

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773707090010

PACS numbers

Key words

Navigation