Skip to main content
Log in

New Expansion Rate Estimate of the Scorpius–Centaurus Association Based on T Tauri Stars from the Gaia DR2 Catalog

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The kinematic properties of the Scorpius–Centaurus association were studied using spatial velocities of approximately 700 young T Tauri stars. Their proper motions and trigonometric parallaxes were selected by Zari et al. from the Gaia DR2 catalog, and radial velocities were taken from various sources. The linear expansion coefficient’s new estimate of the association \(K = 39 \pm 2\) km/s/kpc is obtained by considering the influence of the galactic spiral density wave with an amplitude of radial disturbances \({{f}_{R}} = 5\) km/s and solar phase in the wave\( - 120^\circ \). The proper rotation of the association is shown to be small. The residual velocity ellipsoid of these stars has semimajor axes \({{\sigma }_{{1,2,3}}} = (7.72,1.87,1.74) \pm (0.56,0.37,0.22)\) km/s and is positioned at an angle \(12^\circ \pm 2^\circ \) to the galactic plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, C. A. L. Bailer-Jones, M. Biermann, D. W. Evans, et al. (Gaia Collab.), Astron. Astrophys. 616, 1 (2018).

    Google Scholar 

  2. L. Lindegren, J. Hernandez, A. Bombrun, S. Klioner, U. Bastian, M. Ramos-Lerate, A. de Torres, H. Steidelmuller, et al. (Gaia Collab.), Astron. Astrophys. 616, 2 (2018).

    Article  Google Scholar 

  3. F. Damiani, L. Prisinzano, I. Pillitteri, G. Micela, and S. Sciortino, Astron. Astrophys. 623, 112 (2019).

    Article  ADS  Google Scholar 

  4. P. T. de Zeeuw, R. Hoogerwerf, J. H. J. de Bruijne, A. G. A. Brown, and A. Blaauw, Astron. J. 117, 354 (1999).

    Article  ADS  Google Scholar 

  5. N. J. Wright and E. E. Mamajek, Mon. Not. R. Astron. Soc. 476, 381 (2018).

    Article  ADS  Google Scholar 

  6. V. A. Ambartsumian, Astron. Zh. 26 (3) (1949).

  7. A. Blaauw, Bull. Astron. Inst. Netherland 11, 414 (1952).

    ADS  Google Scholar 

  8. A. Blaauw, Ann. Rev. Astron. Astrophys. 2, 213 (1964).

    Article  ADS  Google Scholar 

  9. E. E. Mamajek, M. Meyer, and J. Liebert, Astron. J. 124, 1670 (2002).

    Article  ADS  Google Scholar 

  10. M. J. Sartori, J. R. D. Lepine, and W. S. Dias, Astron. Astrophys. 404, 913 (2003).

    Article  ADS  Google Scholar 

  11. T. Preibisch and E. Mamajek, in Handbook of Star Forming Regions, Ed. by Bo Reipurth, Vol. 5 of The Southern Sky ASP Monograph Publications (ASP, San Francisco, 2008), Vol. 2.

  12. T. Cantat-Gaudin, C. Jordi, N. J. Wright, J. J. Armstrong, A. Vallenari, L. Balaguer-Nunez, P. Ramos, D. Bossini, et al., Astron. Astrophys. 626, 17 (2019).

    Article  ADS  Google Scholar 

  13. A. Rao, P. Gandhi, C. Knigge, J. A. Paice, N. W. C. Leigh, and D. Boubert, arXiv: 1908.00810 (2019).

  14. A. M. Mel’nik and A. K. Dambis, Mon. Not. R. Astron. Soc. 472, 3887 (2017).

    Article  ADS  Google Scholar 

  15. A. M. Mel’nik and A. K. Dambis, Astron. Rep. 62, 998 (2018).

    Article  ADS  Google Scholar 

  16. T. Preibisch and H. Zinnecker, Astron. J. 117, 2381 (1999).

    Article  ADS  Google Scholar 

  17. The HIPPARCOS and Tycho Catalogues, ESA SP–1200 (1997).

  18. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 33, 571 (2007).

    Article  ADS  Google Scholar 

  19. C. A. O. Torres, R. Quast, C. H. F. Melo, and M. F. Ste-rzik, in Handbook of Star Forming Regions, Ed. by Bo Reipurth, Vol. 5 of The Southern Sky ASP Monograph Publications (ASP, San Francisco, 2008), Vol. 2.

  20. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 39, 532 (2013).

    Article  ADS  Google Scholar 

  21. E. Zari, H. Hashemi, A. G. A. Brown, K. Jardine, and P. T. de Zeeuw, Astron. Astrophys. 620, 172 (2018).

    Article  ADS  Google Scholar 

  22. T. Camarillo, M. Varun, M. Tyler, and R. Bharat, Publ. Astron. Soc. Pacif. 130, 4101 (2018).

    Article  Google Scholar 

  23. R. Schonrich, J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010).

    Article  ADS  Google Scholar 

  24. C. C. Lin and F. H. Shu, Astrophys. J. 140, 646 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  25. Yu. N. Mishurov and I. A. Zenina, Astron. Astrophys. 341, 81 (1999).

    ADS  Google Scholar 

  26. D. Fernández, F. Figueras, and J. Torra, Astron. Astrophys. 372, 833 (2001).

    Article  ADS  Google Scholar 

  27. V. V. Bobylev, Astron. Lett. 46 (2020, in press).

  28. A. K. Dambis, L. N. Berdnikov, Yu. N. Efremov, et al., Astron. Lett. 41, 489 (2015).

    Article  ADS  Google Scholar 

  29. A. S. Rastorguev, M. V. Zabolotskikh, A. K. Dambis, et al., Astrophys. Bull. 72, 122 (2017).

    Article  ADS  Google Scholar 

  30. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 45, 151 (2019).

    Google Scholar 

  31. A. V. Loktin and M. E. Popova, Astrophys. Bull. 74, 270 (2019).

    Article  ADS  Google Scholar 

  32. K. F. Ogorodnikov, Dynamics of Stellar Systems (Pergamon, Oxford, 1965).

    MATH  Google Scholar 

  33. P. P. Parenago, Course of Stellar Astronomy (Gosizdat, Moscow, 1954) [in Russian].

    Google Scholar 

  34. D. Fernández, F. Figueras, and J. Torra, Astron. Astrophys. 480, 735 (2008).

    Article  ADS  Google Scholar 

  35. B. Goldman, S. Roser, E. Schilbach, A. C. Moor, and T. Henning, Astrophys. J. 868, 32 (2018).

    Article  ADS  Google Scholar 

  36. V. V. Bobylev, Astrophysics 57, 583 (2014).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the reviewer for useful comments, which helped improve the article.

Funding

The study was supported in part by the Program of the Presidium of the Russian Academy of Sciences KP19–270 “Questions of origin and evolution of the Universe using the methods of ground-based observations and space research.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bobylev.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, V.V., Baykova, A.T. New Expansion Rate Estimate of the Scorpius–Centaurus Association Based on T Tauri Stars from the Gaia DR2 Catalog. Astron. Rep. 64, 326–335 (2020). https://doi.org/10.1134/S1063772920040022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920040022

Navigation