Skip to main content
Log in

Kinematics of the Galaxy from Young Open Star Clusters with Data from the Gaia EDR3 Catalogue

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have analyzed the kinematics of open star clusters (OSCs) with the proper motions and distances calculated by Hao et al. based on Gaia EDR3 data. The mean line-of-sight velocities are known for a number of clusters from this list. We show that the Galactic rotation parameters determined from samples of OSCs with various ages are in good agreement between themselves. The most interesting results have been obtained from a sample of 967 youngest OSCs with a mean age of 18 Myr. In particular, we have found the following parameters of the angular velocity of Galactic rotation using only their proper motions and distances: \(\Omega_{0}=28.01\pm 0.15\) km s\({}^{-1}\) kpc\({}^{-1}\), \(\Omega^{\prime}_{0}={-}3.674\pm 0.040\) km s\({}^{-1}\) kpc\({}^{-2}\), and \(\Omega^{\prime\prime}_{0}=0.565\pm 0.023\) km s\({}^{-1}\) kpc\({}^{-3}\). The circular rotation velocity of the solar neighborhood around the Galactic center here is \(V_{0}=226.9\pm 3.1\) km s\({}^{-1}\) for the adopted Galactocentric distance of the Sun \(R_{0}=8.1\pm 0.1\) kpc. The parameters of the spiral density wave have been determined from the space velocities of 233 young clusters. The amplitudes of the radial and tangential velocity perturbations produced by the spiral density wave are \(f_{R}=9.1\pm 0.8\) km s\({}^{-1}\) and \(f_{\theta}=4.6\pm 1.2\) km s\({}^{-1}\), respectively; the perturbation wavelengths are \(\lambda_{R}=3.3\pm 0.5\) kpc and \(\lambda_{\theta}=2.6\pm 0.6\) kpc for the the adopted four-armed spiral pattern. The Sun’s phase in the spiral density wave has been found to be \((\chi_{\odot})_{R}\approx-180^{\circ}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. I. Ablimit, G. Zhao, C. Flynn, and S. A. Bird, Astrophys. J. 895, L12 (2020).

    Article  ADS  Google Scholar 

  2. L. H. Amaral and J. R. D. Lépine, Mon. Not. R. Astron. Soc. 286, 885 (1997).

    Article  ADS  Google Scholar 

  3. C. Babusiaux, F. van Leeuwen, M. A. Barstow, C. Jordi, A. Vallenari, A. Bossini, A. Bressan, T. Cantat-Gaudin, et al. (Gaia Collab.), Astron. Astrophys. 616, 10 (2018).

    Google Scholar 

  4. A. T. Bajkova and V. V. Bobylev, Astron. Lett. 38, 549 (2012).

    Article  ADS  Google Scholar 

  5. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 437, 1549 (2014).

    Article  ADS  Google Scholar 

  6. V. V. Bobylev and A. T. Bajkova, Mon. Not. R. Astron. Soc. 447, L50 (2015).

    Article  ADS  Google Scholar 

  7. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 44, 675 (2018).

    ADS  Google Scholar 

  8. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 45, 109 (2019).

    Article  ADS  Google Scholar 

  9. V. V. Bobylev and A. T. Bajkova, Astron. Rep. 65, 498 (2021).

    Article  ADS  Google Scholar 

  10. V. V. Bobylev, A. T. Bajkova, and A. S. Stepanishchev, Astron. Lett. 34, 515 (2008).

    Article  ADS  Google Scholar 

  11. V. V. Bobylev, A. T. Bajkova, and K. S. Shirokova, Astron. Lett. 42, 721 (2016).

    Article  ADS  Google Scholar 

  12. V. V. Bobylev, A. T. Bajkova, A. S. Rastorguev, and M. V. Zabolotskikh, Mon. Not. R. Astron. Soc. 502, 4377 (2021).

    Article  ADS  Google Scholar 

  13. J. Bovy, Mon. Not. R. Astron. Soc. 468, L63 (2017).

    Article  ADS  Google Scholar 

  14. A. G. A. Brown, A. Vallenari, T. Prusti, J. de Bruijne, F. Mignard, R. Drimmel, C. Babusiaux, C. A. L. Bailer-Jones, et al. (Gaia Collab.), Astron. Astrophys. 595, 2 (2016).

    Google Scholar 

  15. A. G. A. Brown, A. Vallenari, T. Prusti, de Bruijne, C. Babusiaux, C. A. L. Bailer-Jones, M. Biermann, D. W. Evans, et al. (Gaia Collab.), Astron. Astrophys. 616, 1 (2018).

    Google Scholar 

  16. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, M. Biermann, O. L. Creevely, D. W. Evans, et al. (Gaia Collab.), Astron. Astrophys. 649, 1 (2021).

    Google Scholar 

  17. W. B. Burton, Astron. Astrophys. 10, 76 (1971).

    ADS  Google Scholar 

  18. D. Camargo, C. Bonatto, and E. Bica, Mon. Not. R. Astron. Soc. 450, 4150 (2015).

    Article  ADS  Google Scholar 

  19. T. Cantat-Gaudin, C. Jordi, A. Vallenari, A. Bragaglia, L. Balaguer-Núñez, C. Soubiran, et al., Astron. Astrophys. 618, A93 (2018).

    Article  Google Scholar 

  20. T. Cantat-Gaudin, F. Anders, A. Castro-Ginard, C. Jordi, M. Romero-Gomez, C. Soubiran, L. Casamiquela, Y. Tarricq, et al., Astron. Astrophys. 640, A1 (2020).

    Article  Google Scholar 

  21. X.-Q. Cui, Y.-H. Zhao, Y.-Q. Chu, G.-P. Li, Q. Li, L.-P. Zhang, H. J. Su, Z.-Q. Yao, et al., Res. Astron. Astrophys. 12, 1197 (2012).

    Article  ADS  Google Scholar 

  22. A. K. Dambis, L. N. Berdnikov, Yu. N. Efremov, A. Yu. Knyazev, A. S. Rastorguev, E. V. Glushkova, V. V. Kravtsov, D. G. Turner, D. J. Majaess, and R. Sefako, Astron. Lett. 41, 489 (2015).

    Article  ADS  Google Scholar 

  23. W. S. Dias, J. R. D. Lépine, and B. S. Alessi, Astron. Astrophys. 376, 441 (2001).

    Article  ADS  Google Scholar 

  24. W. S. Dias, M. Assafin, V. Flório, B. S. Alessi, and V. Libero, Astron. Astrophys. 446, 949 (2006).

    Article  ADS  Google Scholar 

  25. W. S. Dias, H. Monteiro, A. Moitinho, J. R. D. Lépine, G. Carraro, E. Paunzen, B. Alessi, and L. Villela, Mon. Not. R. Astron. Soc. 504, 356 (2021).

    Article  ADS  Google Scholar 

  26. E. V. Glushkova, A. K. Dambis, A. M. Mel’nik, and A. S. Rastorguev, Astron. Astrophys. 329, 514 (1998).

    ADS  Google Scholar 

  27. C. J. Hao, Y. Xu, L. G. Hou, S. B. Bian, J. J. Li, Z. Y. Wu, Z. H. He, Y. J. Li, and D. J. Liu, Astron. Astrophys. 652, 102 (2021).

    Article  ADS  Google Scholar 

  28. T. C. Junqueira, C. Chiappini, J. R. D. Lépine, I. Minchev, and B. X. Santiago, Mon. Not. R. Astron. Soc. 449, 2336 (2015).

    Article  ADS  Google Scholar 

  29. N. V. Kharchenko, A. E. Piskunov, S. Röser, E. Schilbach, and R.-D. Scholz, Astron. Astrophys. 438, 1163 (2005).

    Article  ADS  Google Scholar 

  30. N. V. Kharchenko, R.-D. Scholz, A. E. Piskunov, S. Röser, and E. Schilbach, Astron. Nachr. 328, 889 (2007).

    Article  ADS  Google Scholar 

  31. N. V. Kharchenko, A. E. Piskunov, E. Schilbach, S. Röser, and R.-D. Scholz, Astron. Astrophys. 558, A53 (2013).

    Article  ADS  Google Scholar 

  32. M. A. Kuhn, L. A. Hillenbrand, A. Sills, E. D. Feigelson, and K. V. Getman, Astrophys. J. 870, 32 (2018).

    Article  ADS  Google Scholar 

  33. J. R. D. Lépine, W. S. Dias, and Yu. Mishurov, Mon. Not. R. Astron. Soc. 386, 2081 (2008).

    Article  ADS  Google Scholar 

  34. C. C. Lin and F. H. Shu, Astrophys. J. 140, 646 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  35. L. Lindegren, J. Hernandez, A. Bombrun, S. Klioner, U. Bastian, M. Ramos-Lerate, A. de Torres, H. Steidelmuller, et al. (Gaia Collab.), Astron. Astrophys. 616, 2 (2018).

    Article  Google Scholar 

  36. A. V. Loktin and G. V. Beshenov, Astron. Rep. 47, 6 (2003).

    Article  ADS  Google Scholar 

  37. A. V. Loktin and M. E. Popova, Astron. Rep. 51, 364 (2007).

    Article  ADS  Google Scholar 

  38. A. V. Loktin and M. E. Popova, Astrophys. Bull. 74, 270 (2019).

    Article  ADS  Google Scholar 

  39. J. Maiz Apellániz, arXiv: 2110.01475 (2021).

  40. A. M. Mel’nik, A. K. Dambis, and A. S. Rastorguev, Astron. Lett. 27, 611 (2001).

    Article  Google Scholar 

  41. H. Monteiro, D. A. Barros, W. S. Dias, and J. R. D. Lépine, Front. Astron. Space Sci. 8, 62 (2021).

    Article  ADS  Google Scholar 

  42. P. Mróz, A. Udalski, D. M. Skowron, J. Skowron, I. Soszynski, P. Pietrukowicz, M. K. Szymański, R. Poleski, et al., Astrophys. J. 870, L10 (2019).

    Article  ADS  Google Scholar 

  43. S. Naoz and N. J. Shaviv, New Astron. 12, 410 (2007).

    Article  ADS  Google Scholar 

  44. A. E. Piskunov, N. V. Kharchenko, S. Röser, E. Schilbach, and R.-D. Scholz, Astron. Astrophys. 445, 545 (2006).

    Article  ADS  Google Scholar 

  45. M. E. Popova and A. V. Loktin, Astron. Lett. 31, 171 (2005).

    Article  ADS  Google Scholar 

  46. T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, C. Babusiaux, C. A. L. Bailer-Jones, U. Bastian, M. Biermann, et al. (Gaia Collab.), Astron. Astrophys. 595, 1 (2016).

    Google Scholar 

  47. A. S. Rastorguev, M. V. Zabolotskikh, A. K. Dambis, N. D. Utkin, V. V. Bobylev, and A. T. Bajkova, Astrophys. Bull. 72, 122 (2017).

    Article  ADS  Google Scholar 

  48. M. J. Reid, K. M. Menten, A. Brunthaler, X. W. Zheng, T. M. Dame, Y. Xu, J. Li, N. Sakai, Y. Wu, et al., Astrophys. J. 885, 131 (2019).

    Article  ADS  Google Scholar 

  49. F. Ren, X. Chen, H. Zhang, R. de Grijs, L. Deng, and Yang Huang, Astrophys. J. Lett. 911, 20 (2021).

    Article  ADS  Google Scholar 

  50. R.-D. Scholz, N. V. Kharchenko, A. E. Piskunov, S. Röser, and E. Schilbach, Astron. Astrophys. 581, A39 (2015).

    Article  Google Scholar 

  51. R. Schönrich, J. J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010).

    Article  ADS  Google Scholar 

  52. Y. Tarricq, C. Soubiran, L. Casamiquela, T. Cantat-Gaudin, L. Chemin, F. Anders, T. Antoja, M. Romero-Gomez, et al., Astron. Astrophys. 647, A19 (2021).

    Article  Google Scholar 

  53. F. Wang, H.-W. Zhang, Y. Huang, B.-Q. Chen, H.-F. Wang, and C. Wang, Mon. Not. R. Astron. Soc. 504, 199 (2021).

    Article  ADS  Google Scholar 

  54. M.-S. Xiang, X.-W. Liu, H.-B. Yuan, Z.-Y. Huo, Y. Huang, C. Wang, B.-Q. Chen, J.-J. Ren, et al., Mon. Not. R. Astron. Soc. 467, 1890 (2017).

    ADS  Google Scholar 

  55. M. V. Zabolotskikh, A. S. Rastorguev, and A. K. Dambis, Astron. Lett. 28, 454 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bobylev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, V.V., Bajkova, A.T. Kinematics of the Galaxy from Young Open Star Clusters with Data from the Gaia EDR3 Catalogue. Astron. Lett. 48, 9–19 (2022). https://doi.org/10.1134/S106377372112001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377372112001X

Keywords:

Navigation