Skip to main content
Log in

Quantitative analysis of bronze samples by laser-induced breakdown spectroscopy (LIBS): A new approach, model, and experiment

  • Laser Spectroscopy
  • Published:
Laser Physics

Abstract

A new approach to the quantitative elemental analysis of alloys by means of laser-induced breakdown spectroscopy (LIBS) is proposed. The disproportion between the element stoichiometry and spectral intensities is attributed to selective evaporation of components during the heating-melting-evaporation stage. The proposed correction to plasma spectra with account for the Prokhorov-Bunkin melt transparency wave ensures a good agreement between the relative intensities of LIBS analytical lines [(nm): Cu, 511; Zn, 472; Sn, 286; Pb, 406] and the alloy stoichiometry for five samples of four-component bronze measured in various regimes of plasma excitation and signal detection. A criterion is formulated to select the analytical lines, for which the concentration of elements is proportional to the constant of the process and the intensity of the corrected lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Prokhorov, V. A. Batanov, F. V. Bunkin, and V. B. Fedorov, IEEE J. Quantum Electron. 9, 503 (1973).

    Article  Google Scholar 

  2. L. Fornarini, F. Colao, R. Fantoni, et al., Spectrochim. Acta B: Atomic Spectroscopy 60(7–8), 1186 (2005).

    Google Scholar 

  3. F. Brech and L. Cross, Appl. Spectrosc. 16, 59 (1962).

    Google Scholar 

  4. L. J. Radziemski, Spectrochim. Acta B 57, 1109 (2002).

    Article  Google Scholar 

  5. G. P. Arumov, A. Yu. Bukharov, S. M. Pershin, et al., Sov. Tech. Phys. Lett. 13, 362 (1987).

    Google Scholar 

  6. K. Takaharu, S. Hiroya, S. Koichi, and M. Katsusuke, Jpn. Patent No. JP62-85, 847 (1987).

  7. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, Spectrochim. Acta B 57, 1167 (2002).

    Google Scholar 

  8. J. Scaffidi, W. Pearman, and S. M. Angel, Appl. Opt. 43(35), 6492 (2004).

    Article  Google Scholar 

  9. L. St-Onge, M. Sabsabi, and P. Cielo, J. Anal. At. Spectrom. 12, 997 (1997).

    Article  Google Scholar 

  10. L. St-Onge, V. Detalle, and M. Sabsabi, Spectrohim. Acta B 57, 121 (2002).

    Google Scholar 

  11. M. Corsi, G. Cristoforetti, V. Palleschi, et al., Eur. Phys. J. D 13, 373 (2001).

    Article  ADS  Google Scholar 

  12. V. Lazic, R. Fantoni, F. Colao, et al., J. Anal. At. Spectrom. 19, 429 (2004).

    Article  Google Scholar 

  13. L. Dudragne, Ph. Adam, and J. Amouroux, Appl. Spectrosc. 52(10), 1321 (1998).

    ADS  Google Scholar 

  14. C. Geertsen, A. Briand, F. Chartier, et al., J. Anal. At. Spectrom. 9, 17 (1994).

    Article  Google Scholar 

  15. X. Xu and K. Song, Appl. Phys. A 69, S869 (1999).

    Article  ADS  Google Scholar 

  16. L. A. Golovan, B. A. Markov, P. K. Kashkarov, and V. Yu. Timoshenko, Solid State Commun. 108(10), 707 (1998).

    Article  Google Scholar 

  17. Ya. B. Zel’dovich and D. Landau, Zh. Eksp. Teor. Fiz. 38, 32 (1944).

    Google Scholar 

  18. I. K. Kikoin and A. P. Senchenkov, Fiz. Met. Metalloved. 24, 843 (1967).

    Google Scholar 

  19. A. M. Prokhorov, V. I. Konov, I. Ursu, and I. N. Mikheilesku, Interaction of Laser Radiation with Metals (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  20. A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, et al., Sov. Phys. Tech. Phys. 13, 640 (1968).

    Google Scholar 

  21. T. E. Zavecz, M. A. Saifi, and M. Noits, Appl. Phys. Lett. 26(4), 165 (1975).

    Article  ADS  Google Scholar 

  22. B. V. Nekrasov, Textbook of General Chemistry (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

  23. P. Fichet, P. Mauchien, J.-F. Wagner, and C. Moulin, Anal. Chim. Acta 429, 269 (2001).

    Article  Google Scholar 

  24. J. M. Fishburn, M. J. Withford, D. W. Coutts, and J. A. Piper, Appl. Opt. 43(35), 6473 (2004).

    Article  Google Scholar 

  25. www.copper.org.

  26. A. Ciucci, V. Palleschi, S. Rastelli, et al., Laser Part. Beams 17(4), 793 (1999).

    Article  ADS  Google Scholar 

  27. A. M. Prokhorov, G. G. Managadze, S. M. Pershin, et al., in Proceedings of the International Conference Phobos-88, Moscow, Russia, 1988, Ed. By R. Sagdeev (Space Research Inst. RAS, Moscow, 1988), p. 217.

    Google Scholar 

  28. A. K. Knight, N. L. Scherbarth, D. A. Cremers, et al., in Proceedings of 1st International Conference of Laser Induced Plasma Spectroscopy and Applications (LIBS), Tirrenia, Pisa, Italy (Pisa, 2000), p. 111.

  29. http://emits.esa.int.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pershin, S.M., Colao, F. & Spizzichino, V. Quantitative analysis of bronze samples by laser-induced breakdown spectroscopy (LIBS): A new approach, model, and experiment. Laser Phys. 16, 455–467 (2006). https://doi.org/10.1134/S1054660X06030066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06030066

PACS numbers

Navigation