Skip to main content
Log in

Theoretical Analysis of the Fluorescence Spectra of 7-Azaindole and Its Tautomer

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The electronic—vibrational fluorescence spectra of the first, S 01 L b, and second, S 01 L a, electronic transitions of 7-azaindole and its tautomer for an isolated state have been calculated. Specific features of structural changes in 7-azaindole and its tautomer upon electronic excitation are determined. Vibrational spectra are assigned for the ground state, and the vibrational structure of fluorescence spectra is interpreted. It is shown that the intensity redistribution between the 6a and 6b oscillations, which is observed in the fluorescence spectrum of the S 01 L b transition in 7-azaindole, can be explained as a result of intensity borrowing (according to the Herzberg—Teller mechanism) from the 1 L a state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Hofgen, U. Egerland, T. Kronbach, D. Marx, S. Szelenyi, H. Kuss, and E. Polymeropoulos, World Patent Application WO 20080207689, USSR Inventor’s Certificate No. 11200 (2008).

    Google Scholar 

  2. K. C. Ingham and M. A. El-Bayoumi, J. Am. Chem. Soc. 96, 1674 (1974).

    Article  Google Scholar 

  3. S. K. Kim and E. R. Bernstein, J. Phys. Chem. 94, 3531 (1990).

    Article  Google Scholar 

  4. A. Nakajima, F. Ono, Y. Kihara, A. Ogawa, K. Matsubara, K. Ishikawa, M. Baba, and K. Kaya, Laser Chem. 15, 167 (1995).

    Article  Google Scholar 

  5. C. Carmona, E. Carcia-Fernández, J. Hidalgo, A. Sánchez-Coronilla, and M. Balón, J. Fluoresc. 24, 45 (2014).

    Article  Google Scholar 

  6. I. Alkorta and J. Elguero, Struct. Chem. 25, 683 (2014).

    Article  Google Scholar 

  7. L. Serrano-Andrés and M. Merchán, Chem. Phys. Lett. 418, 569 (2006).

    Article  ADS  Google Scholar 

  8. P. Löwdin, Adv. Quant. Chem. 2, 213 (1976).

    Article  Google Scholar 

  9. Ya. Ladik, Quantum Biochemistry for Chemists and Biologists (Ferdinand Enke, Stuttgart, 1972; Mir, Moscow, 1975).

    Google Scholar 

  10. W. Saenger, Principles of Nucleic Acid Structure (Springer, C. R. Cantor, New York, 1984).

    Book  Google Scholar 

  11. G. N. Ten and V. I. Baranov, J. Appl. Spectrosc. 71, 767 (2004).

    Article  ADS  Google Scholar 

  12. G. N. Ten and V. I. Baranov, Opt. Spectrosc. 97, 195 (2004).

    Article  ADS  Google Scholar 

  13. G. N. Ten, T. G. Burova, R. S. Shcherbakov, and V. I. Baranov, Opt. Spectrosc. 109, 845 (2010).

    Article  ADS  Google Scholar 

  14. T. Burova, V. Ermolenkov, G. Ten, R. Scherbakov, and V. Baranov, J. Phys. Chem. A 115, 10600 (2011).

    Article  Google Scholar 

  15. G. N. Ten, O. E. Glukhova, M. M. Slepchenkov, and V. I. Baranov, J. Mol. Model. (in press).

  16. R. Brause, M. Schmitt, D. Krugler, and K. Kleinermanns, Mol. Phys. 102, 1615 (2004).

    Article  ADS  Google Scholar 

  17. T. G. Burova, V. V. Ermolenkov, G. N. Ten, D. M. Kadrov, M. N. Nurlygaianova, V. I. Baranov, and I. K. Lednev, J. Phys. Chem. A 117, 12734 (2013).

    Article  Google Scholar 

  18. G. N. Ten and V. I. Baranov, J. Appl. Spectrosc. 75, 168 (2008).

    Article  ADS  Google Scholar 

  19. F. Santoro, M. Improta, A. Lami, J. Bloino, and V. Barone, J. Chem. Phys. 126, 084509 (2007).

    Article  ADS  Google Scholar 

  20. F. Santoro, A. Lami, M. Improta, and V. Barone, J. Chem. Phys. 126, 184102 (2007).

    Article  ADS  Google Scholar 

  21. F. Santoro, M. Improta, A. Lami, J. Bloino, and V. Barone, J. Chem. Phys. 128, 224311 (2008).

    Article  ADS  Google Scholar 

  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  23. K. Fuke and K. Kaya, J. Phys. Chem. 93, 614 (1989).

    Article  Google Scholar 

  24. I. V. Dorogan, Ross. Khim. Zh. 11 (5), 91 (2007).

    Google Scholar 

  25. B. I. Stepanov, Vestn. AN BelSSR, No. 3, 67 (1972).

    Google Scholar 

  26. L. A. Gribov and V. I. Baranov, Theory and Methods of Calculation of Molecular Processes: Spectra, Chemical Transformations and Molecular Logic (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  27. M. Schmitt, C. Ratzer, K. Kleinermanns, and W. L. Meerts, Mol. Phys. 102, 1605 (2004).

    Article  ADS  Google Scholar 

  28. G. Varsanyi, Assignments for Vibrational Spectra of 700 Benzene Derivatives (Wiley, New York, 1974).

    Google Scholar 

  29. K. Fuke, H. Yoshiuchi, K. Kaya, Y. Achiba, K. Sato, and K. Kimura, J. Phys. Chem. 88, 5840 (1984).

    Article  Google Scholar 

  30. Y. Huang, S. Arnold, and M. Sulkes, J. Phys. Chem. 100, 4734 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Ten.

Additional information

Original Russian Text © G.N. Ten, O.E. Glukhova, M.M. Slepchenkov, V.I. Baranov, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 3, pp. 377–384.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ten, G.N., Glukhova, O.E., Slepchenkov, M.M. et al. Theoretical Analysis of the Fluorescence Spectra of 7-Azaindole and Its Tautomer. Opt. Spectrosc. 120, 359–366 (2016). https://doi.org/10.1134/S0030400X16030255

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16030255

Keywords

Navigation