Skip to main content

Fluorescence Spectroscopy-Based Methods to Study Protein Folding Dynamics

  • Chapter
  • First Online:
Protein Folding Dynamics and Stability

Abstract

The biological function of a protein is characterised by its three-dimensional conformation and encoded by its amino acid sequence. Tremendous effort has been devoted to understanding the mechanism of protein folding and how the amino acid sequences encode the correct functional conformation of a protein. Fluorescence-based methods, such as time-resolved spectroscopy, fluorescence correlation spectroscopy, or labelling of the proteins by external fluorescent dyes, have been employed to understand the protein folding dynamics. Herein, we describe recent fluorescence spectroscopy-based techniques used to study the conformational dynamics of a protein. Furthermore, these techniques are commonly available in most research laboratories and are used to study the protein–protein, protein–DNA, and protein–ligand interactions. We focus on the extrinsic fluorescent dyes to characterise the folding intermediates and detect the amyloid fibril aggregation in Alzheimer’s and Parkinson’s diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.R. Eftink, M.C. Shastry, Fluorescence methods for studying kinetics of protein-folding reactions. Methods Enzymol. 278, 258–286 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. D.B. Singh, T. Tripathi, Frontiers in Protein Structure, Function, and Dynamics (Springer Nature, Singapore, 2020)

    Book  Google Scholar 

  3. M.A. Hough, Choosing the optimal spectroscopic toolkit to understand protein function. Biosci. Rep. 37(3), BSR20160378 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M.F. Pignataro, M.G. Herrera, V.I. Dodero, Evaluation of peptide/protein self-assembly and aggregation by spectroscopic methods. Molecules 25(20), 4854 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S.M. Kelly, T.J. Jess, N.C. Price, How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751(2), 119–139 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. T. Tripathi, Calculation of thermodynamic parameters of protein unfolding using far-ultraviolet circular dichroism. J Protein. Proteomics 4(2), 85–91 (2013)

    Google Scholar 

  7. N. Nag, S. Sasidharan, P. Saudagar, T. Tripathi, Fundamentals of spectroscopy for biomolecular structure and dynamics, in Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics, ed. by P. Saudagar, T. Tripathi, (Academic Press, San Diego, 2023), pp. 1–35

    Google Scholar 

  8. S. Basak, K. Chattopadhyay, Studies of protein folding and dynamics using single molecule fluorescence spectroscopy. Phys. Chem. Chem. Phys. 16(23), 11139–11149 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. H.S. Chung, K. McHale, J.M. Louis, W.A. Eaton, Single-molecule fluorescence experiments determine protein folding transition path times. Science 335(6071), 981–984 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. T. Tripathi, V.K. Dubey, Advances in Protein Molecular and Structural Biology Methods, 1st edn. (Academic Press, Cambridge, MA, 2022)

    Google Scholar 

  11. P. Saudagar, T. Tripathi, Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics, 1st edn. (Academic Press, San Diego, 2023)

    Google Scholar 

  12. K. Henzler-Wildman, D. Kern, Dynamic personalities of proteins. Nature 450(7172), 964–972 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. P.C. Whitford, J.N. Onuchic, What protein folding teaches us about biological function and molecular machines. Curr. Opin. Struct. Biol. 30, 57–62 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. F.W.J. Teale, Principles of fluorescence spectroscopy—Lakowicz, Jr. Nature 307(5950), 486–486 (1984)

    Article  Google Scholar 

  15. R.F. Steiner, Principles of fluorescence spectroscopy—Lakowicz, Jr. Anal. Biochem. 137(2), 539–539 (1984)

    Article  Google Scholar 

  16. C.A. Royer, Fluorescence spectroscopy. Methods Mol. Biol. 40, 65–89 (1995)

    CAS  PubMed  Google Scholar 

  17. P.G. Varley, Fluorescence spectroscopy. Methods Mol. Biol. 22, 203–218 (1994)

    CAS  PubMed  Google Scholar 

  18. G. Krishnamoorthy, Fluorescence spectroscopy in molecular description of biological processes. Indian J. Biochem. Biophys. 40(3), 147–159 (2003)

    CAS  PubMed  Google Scholar 

  19. N. Shanker, S.L. Bane, Basic aspects of absorption and fluorescence spectroscopy and resonance energy transfer methods. Methods Cell Biol. 84, 213–242 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. A. Gijsbers, T. Nishigaki, N. Sanchez-Puig, Fluorescence anisotropy as a tool to study protein-protein interactions. J. Vis. Exp. 116, 54640 (2016)

    Google Scholar 

  21. N.G. James, D.M. Jameson, Steady-state fluorescence polarization/anisotropy for the study of protein interactions. Methods Mol. Biol. 1076, 29–42 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. D.P. Millar, Time-resolved fluorescence spectroscopy. Curr. Opin. Struct. Biol. 6(5), 637–642 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. A.R. Holzwarth, Time-resolved fluorescence spectroscopy. Methods Enzymol. 246, 334–362 (1995)

    Article  CAS  PubMed  Google Scholar 

  24. S.R. Anderson, Time-resolved fluorescence spectroscopy. Applications to calmodulin. J. Biol. Chem. 266(18), 11405–11408 (1991)

    Article  CAS  PubMed  Google Scholar 

  25. P.B. Chetri, H. Khan, T. Tripathi, Methods to determine the oligomeric structure of proteins, in Advances in Protein Molecular and Structural Biology Methods, ed. by T. Tripathi, V.K. Dubey, (Academic Press, San Diego, 2022), pp. 49–76

    Chapter  Google Scholar 

  26. J. Lee, R.T. Ross, Absorption and fluorescence of tyrosine hydrogen-bonded to amide-like ligands. J. Phys. Chem. B 102(23), 4612–4618 (1998)

    Article  CAS  Google Scholar 

  27. J.T. Vivian, P.R. Callis, Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 80(5), 2093–2109 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. C.P. Pan, P.L. Muino, M.D. Barkley, P.R. Callis, Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment. J. Phys. Chem. B 115(12), 3245–3253 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. N. Hellmann, D. Schneider, Hands on: using tryptophan fluorescence spectroscopy to study protein structure. Methods Mol. Biol. 1958, 379–401 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. A.J. Lopez, L. Martinez, Parametric models to compute tryptophan fluorescence wavelengths from classical protein simulations. J. Comput. Chem. 39(19), 1249–1258 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. E.A. Burstein, S.M. Abornev, Y.K. Reshetnyak, Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms. Biophys. J. 81(3), 1699–1709 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. K.B. Davis, Z. Zhang, E.A. Karpova, J. Zhang, Application of tyrosine-tryptophan fluorescence resonance energy transfer in monitoring protein size changes. Anal. Biochem. 557, 142–150 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. K. Vladislav Victorovich, K. Tatyana Aleksandrovna, P. Victor Vitoldovich, S. Aleksander Nicolaevich, K. Larisa Valentinovna, A. Anastasia Aleksandrovna, Spectra of tryptophan fluorescence are the result of co-existence of certain most abundant stabilized excited state and certain most abundant destabilized excited state. Spectrochim. Acta A Mol. Biomol. Spectrosc. 257, 119784 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. A. Hawe, M. Sutter, W. Jiskoot, Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res. 25(7), 1487–1499 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. C.G. Rosen, G. Weber, Dimer formation from 1-amino-8-naphthalenesulfonate catalyzed by bovine serum albumin. A new fluorescent molecule with exceptional binding properties. Biochemistry 8(10), 3915–3920 (1969)

    Article  CAS  PubMed  Google Scholar 

  36. C.E. Kung, J.K. Reed, Fluorescent molecular rotors: a new class of probes for tubulin structure and assembly. Biochemistry 28(16), 6678–6686 (1989)

    Article  CAS  PubMed  Google Scholar 

  37. H. Naiki, K. Higuchi, M. Hosokawa, T. Takeda, Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal. Biochem. 177(2), 244–249 (1989)

    Article  CAS  PubMed  Google Scholar 

  38. P. Greenspan, E.P. Mayer, S.D. Fowler, Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100(3), 965–973 (1985)

    Article  CAS  PubMed  Google Scholar 

  39. A. Espargaro, S. Llabres, S.J. Saupe, C. Curutchet, F.J. Luque, R. Sabate, On the binding of Congo red to amyloid fibrils. Angew. Chem. Int. Ed. Engl. 59(21), 8104–8107 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. L. Stryer, The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J. Mol. Biol. 13(2), 482–495 (1965)

    Article  CAS  PubMed  Google Scholar 

  41. H. LeVine 3rd, Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2(3), 404–410 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. H. LeVine 3rd, Mechanism of A beta(1-40) fibril-induced fluorescence of (trans,trans)-1-bromo-2,5-bis(4-hydroxystyryl)benzene (K114). Biochemistry 44(48), 15937–15943 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. X.Y. Liu, X.J. Wang, L. Shi, Y.H. Liu, L. Wang, K. Li, Q. Bu, X.B. Cen, X.Q. Yu, Rational design of quinoxalinone-based red-emitting probes for high-affinity and long-term visualizing amyloid-beta in vivo. Anal. Chem. 94(21), 7665–7673 (2022)

    Article  CAS  PubMed  Google Scholar 

  44. A. Ojida, T. Sakamoto, M.A. Inoue, S.H. Fujishima, G. Lippens, I. Hamachi, Fluorescent BODIPY-based Zn(II) complex as a molecular probe for selective detection of neurofibrillary tangles in the brains of Alzheimer’s disease patients. J. Am. Chem. Soc. 131(18), 6543–6548 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. A.A. Maskevich, V.I. Stsiapura, V.A. Kuzmitsky, I.M. Kuznetsova, O.I. Povarova, V.N. Uversky, K.K. Turoverov, Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. J. Proteome Res. 6(4), 1392–1401 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. A.I. Sulatskaya, A.V. Lavysh, A.A. Maskevich, I.M. Kuznetsova, K.K. Turoverov, Thioflavin T fluoresces as excimer in highly concentrated aqueous solutions and as monomer being incorporated in amyloid fibrils. Sci. Rep. 7(1), 2146 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  47. M. Groenning, L. Olsen, M. van de Weert, J.M. Flink, S. Frokjaer, F.S. Jorgensen, Study on the binding of thioflavin T to beta-sheet-rich and non-beta-sheet cavities. J. Struct. Biol. 158(3), 358–369 (2007)

    Article  CAS  PubMed  Google Scholar 

  48. A.J. Howie, D.B. Brewer, Optical properties of amyloid stained by Congo red: history and mechanisms. Micron 40(3), 285–301 (2009)

    Article  CAS  PubMed  Google Scholar 

  49. W.E. Klunk, R.F. Jacob, R.P. Mason, Quantifying amyloid by Congo red spectral shift assay. Methods Enzymol. 309, 285–305 (1999)

    Article  CAS  PubMed  Google Scholar 

  50. R. Khurana, V.N. Uversky, L. Nielsen, A.L. Fink, Is Congo red an amyloid-specific dye? J. Biol. Chem. 276(25), 22715–22721 (2001)

    Article  CAS  PubMed  Google Scholar 

  51. H. Inouye, D.A. Kirschner, Alzheimer’s beta-amyloid: insights into fibril formation and structure from Congo red binding. Subcell. Biochem. 38, 203–224 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. D.L. Sackett, J. Wolff, Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal. Biochem. 167(2), 228–234 (1987)

    Article  CAS  PubMed  Google Scholar 

  53. A. Sahu, N. Kasoju, U. Bora, Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules 9(10), 2905–2912 (2008)

    Article  CAS  PubMed  Google Scholar 

  54. A. Cser, K. Nagy, L. Biczok, Fluorescence lifetime of Nile red as a probe for the hydrogen bonding strength with its microenvironment. Chem. Phys. Lett. 360(5-6), 473–478 (2002)

    Article  CAS  Google Scholar 

  55. A. Chaudhary, K. Schneitz, Using steady-state fluorescence anisotropy to study protein clustering. Methods Mol. Biol. 2457, 253–260 (2022)

    Article  PubMed  Google Scholar 

  56. H. Matsuzawa, K. Watanabe, M. Iwahashi, Fluorescence anisotropy and rotational diffusion of two kinds of 4-n-alkyl-4′-cyanobiphenyls in glycerol. J. Oleo Sci. 56(11), 579–586 (2007)

    Article  CAS  PubMed  Google Scholar 

  57. J.A. Steinkamp, Time-resolved fluorescence measurements. Curr Protoc Cytom Chapter 1, Unit 1.15 (2001)

    CAS  PubMed  Google Scholar 

  58. A. Tiiman, V. Jelic, J. Jarvet, P. Jaremo, N. Bogdanovic, R. Rigler, L. Terenius, A. Graslund, V. Vukojevic, Amyloidogenic nanoplaques in blood serum of patients with Alzheimer’s disease revealed by time-resolved thioflavin T fluorescence intensity fluctuation analysis. J. Alzheimers Dis. 68(2), 571–582 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. Hawe, T. Rispens, J.N. Herron, W. Jiskoot, Probing bis-ANS binding sites of different affinity on aggregated IgG by steady-state fluorescence, time-resolved fluorescence and isothermal titration calorimetry. J. Pharm. Sci. 100(4), 1294–1305 (2011)

    Article  CAS  PubMed  Google Scholar 

  60. D.M. Togashi, A.G. Ryder, Time-resolved fluorescence studies on bovine serum albumin denaturation process. J. Fluoresc. 16(2), 153–160 (2006)

    Article  CAS  PubMed  Google Scholar 

  61. A. Bothra, A. Bhattacharyya, C. Mukhopadhyay, K. Bhattacharyya, S. Roy, A fluorescence spectroscopic and molecular dynamics study of bis-ANS/protein interaction. J. Biomol. Struct. Dyn. 15(5), 959–966 (1998)

    Article  CAS  PubMed  Google Scholar 

  62. B. Stopa, L. Konieczny, B. Piekarska, I. Roterman, J. Rybarska, M. Skowronek, Effect of self association of bis-ANS and bis-azo dyes on protein binding. Biochimie 79(1), 23–26 (1997)

    Article  CAS  PubMed  Google Scholar 

  63. M.Z. Kamal, J. Ali, N.M. Rao, Binding of bis-ANS to Bacillus subtilis lipase: a combined computational and experimental investigation. Biochim. Biophys. Acta 1834(8), 1501–1509 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. M.A. Haidekker, T.P. Brady, D. Lichlyter, E.A. Theodorakis, Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg. Chem. 33(6), 415–425 (2005)

    Article  CAS  PubMed  Google Scholar 

  65. T. Iio, M. Itakura, S. Takahashi, S. Sawada, 9-(Dicyanovinyl)julolidine binding to bovine brain calmodulin. J. Biochem. 109(4), 499–502 (1991)

    Article  CAS  PubMed  Google Scholar 

  66. W.J. Akers, J.M. Cupps, M.A. Haidekker, Interaction of fluorescent molecular rotors with blood plasma proteins. Biorheology 42(5), 335–344 (2005)

    CAS  PubMed  Google Scholar 

  67. J.J. Mittag, J.O. Radler, J.J. McManus, Peptide self-assembly measured using fluorescence correlation spectroscopy. Methods Mol. Biol. 1777, 159–171 (2018)

    Article  CAS  PubMed  Google Scholar 

  68. E.L. Elson, Brief introduction to fluorescence correlation spectroscopy. Methods Enzymol. 518, 11–41 (2013)

    Article  CAS  PubMed  Google Scholar 

  69. J.A. Fitzpatrick, B.F. Lillemeier, Fluorescence correlation spectroscopy: linking molecular dynamics to biological function in vitro and in situ. Curr. Opin. Struct. Biol. 21(5), 650–660 (2011)

    Article  CAS  PubMed  Google Scholar 

  70. E.L. Elson, Introduction to fluorescence correlation spectroscopy-brief and simple. Methods 140–141, 3–9 (2018)

    Article  PubMed  Google Scholar 

  71. A. Sarkar, V. Namboodiri, J. Enderlein, M. Kumbhakar, Picosecond to second fluorescence correlation spectroscopy for studying solute exchange and quenching dynamics in Micellar media. J. Phys. Chem. Lett. 12(31), 7641–7649 (2021)

    Article  CAS  PubMed  Google Scholar 

  72. M. Shimizu, S. Sasaki, M. Tsuruoka, DNA length evaluation using cyanine dye and fluorescence correlation spectroscopy. Biomacromolecules 6(5), 2703–2707 (2005)

    Article  CAS  PubMed  Google Scholar 

  73. P. Dittrich, F. Malvezzi-Campeggi, M. Jahnz, P. Schwille, Accessing molecular dynamics in cells by fluorescence correlation spectroscopy. Biol. Chem. 382(3), 491–494 (2001)

    Article  CAS  PubMed  Google Scholar 

  74. H. Engelke, D. Heinrich, J.O. Radler, Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy. Phys. Biol. 7(4), 046014 (2010)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Saudagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Tripathi, T., Saudagar, P. (2023). Fluorescence Spectroscopy-Based Methods to Study Protein Folding Dynamics. In: Saudagar, P., Tripathi, T. (eds) Protein Folding Dynamics and Stability. Springer, Singapore. https://doi.org/10.1007/978-981-99-2079-2_2

Download citation

Publish with us

Policies and ethics