Skip to main content
Log in

Phase behavior of DODAB aqueous solution

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Phase behavior of DODAB aqueous solution, prepared without sonication, was studied by adiabatic scanning calorimetry. Measurements revealed four phase transitions with the temperatures 35.2, 39.6, 44.6, and 52.4°C at heating and one transition at the temperature 40.4°C at cooling. The first three transitions at heating occur in unilamellar vesicles. The first and third transitions correspond to the subgel-gel and gelliquid phase transitions, corresponding enthalpy jumps are equal to 33 and 49 kJ/mol. The second transition appears after some aging and is similar to gel-ripple phase transition in a DPPC solution, with the enthalpy jump under the transition exceeding 7.4 kJ/mol. The transition occurs in unilamellar vesicles. The transition at the temperature 52.4°C occurs in another subsystem of the solution, which we believe to be multilamellar vesicles. The enthalpy jump at this transition is equal to 97 kJ/mol, and data analysis suggests that this is a subgel-liquid transition. The phase transition at cooling is the liquid-gel transition in unilamellar vesicles. During the measurements, a slow evolution of the solution occurs, consisting in a change of concentrations of unilamellar and multilamellar vesicles. This transformation mainly occurs at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Nagle and S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000).

    Article  Google Scholar 

  2. P. Saveyn, P. Van der Meeren, M. Zackrisson, T. Narayanan, and U. Olsson, Soft Matter 5, 1735 (2009).

    Article  ADS  Google Scholar 

  3. C. R. Benatti, M. J. Tiera, E. Feitosa, and G. Olofsson, Thermochim. Acta 328, 137 (1999).

    Article  Google Scholar 

  4. J. Cocquyt, U. Olsson, G. Olofsson, and P. Van der Meeren, Colloid Polym. Sci. 283, 1376 (2005).

    Article  Google Scholar 

  5. R. O. Brito and E. F. Marques, Chem. Phys. Lipids 137, 18 (2005).

    Article  Google Scholar 

  6. L. Coppola, M. Youssry, I. Nicotera, and L. Gentile, J. Colloid Interface Sci. 338, 550 (2009).

    Article  Google Scholar 

  7. E. Feitosa, P. C. A. Barreleiro, and G. Olofsson, Chem. Phys. Lipids 105, 201 (2000).

    Article  Google Scholar 

  8. E. Feitosa, F. R. Alves, E. M. S. Castanheira, M. Elisabete, and C. D. R. Oliveira, Colloid Polym. Sci. 287, 591 (2009).

    Article  Google Scholar 

  9. M. Kodama, H. Hashigami, and S. Seki, Biochim. Biophys. Acta 814, 300 (1985).

    Article  Google Scholar 

  10. E. E. Entov, V. A. Levchenko, and V. P. Voronov, Int. J. Thermophys. 14, 221 (1993).

    Article  ADS  Google Scholar 

  11. V. P. Voronov, JETP 91(1), 144 (2000).

    Article  ADS  Google Scholar 

  12. H. Aoki, T. Koto, and M. Kodama, J. Therm. Anal. Calorim. 64, 299 (2001).

    Article  Google Scholar 

  13. Handbook of Optical Materials, Ed. by M. J. Weber (CRC Press, Boca Raton, Florida, United States, 2003).

    Google Scholar 

  14. http://www.photocor.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Muratov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronov, V.P., Kuryakov, V.N. & Muratov, A.R. Phase behavior of DODAB aqueous solution. J. Exp. Theor. Phys. 115, 1105–1110 (2012). https://doi.org/10.1134/S106377611211012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611211012X

Keywords

Navigation