Skip to main content
Log in

Interactions between dopamine, serotonin, and other reward factor

  • Human and Animal Physiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Interactions between dopamine, serotonin, reward factors, and main representatives of regulatory peptide families have been analyzed using the bulk of disembodied publications of the last 50 years. A database covering the direction of physiological effects, doses, and administration modes of regulatory peptides and biologically active compounds, species, organ and tissue systems, as well as receptor mechanisms has been created. Complex cascade interactions between dopamine, serotonin, reward factors, and regulatory peptides were analyzed and organized. Analysis of coordinated functioning of the dopaminergic and serotonergic systems (at different levels) allowed us to reveal their opponent reciprocal interactions and to introduce their integral characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alper, R.H., Hemodynamic and Renin Responses to (+−)-DOI, A Selective 5-HT2 Receptor Agonist, in Conscious Rats, Eur. J. Pharmacol., 1990, vol. 175, no. 3, pp. 323–332.

    Article  PubMed  CAS  Google Scholar 

  • Appel, N.M., Track, N.S., and Van Loon, G.R., Autonomic and Endocrine Participation in Opioid Peptide-Induced Hyperglycemia, J. Auton. Nerv. Syst., 1987, vol. 20, no. 3, pp. 221–231.

    Article  PubMed  CAS  Google Scholar 

  • Ashmarin, I.P. and Koroleva, S.V., Negative and Positive Emotions. Neurochemical Mechanisms of Effect on Pathological Processes, Patogenez, 2004, no. 1, pp. 30–38.

  • Bagdy, G., Calogero, A.E., Szemeredi, K., et al., Beta-Endorphin Responses to Different Serotonin Agonists: Involvement of Corticotropin-Releasing Hormone, Vasopressin and Direct Pituitary Action, Brain Res., 1990, vol. 537, nos. 1–2, pp. 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Bankson, G.M. and Cunningham, K.A., 3,4-Methylene-dioxymethamphetamine (MDMA) as a Unique Model of Serotonin Receptor Function and Serotonin-Dophamine Interactions, J. Pharmacol. Exp. Ther., 2001, vol. 297, no. 3, pp. 846–852.

    PubMed  CAS  Google Scholar 

  • Bazyan, A.S., Orlova, N.V., and Getsova, V.M., Modulation of the Activity of Monoaminergic Brain Systems and Emotional Condition by Dalargin in Rats during Development of Emotional Resonance Response, Zhurn. Vyssh. Nerv. Deyatel’nosti. Im. I.P. Pavlova, 2000, vol. 50, no. 3, pp. 500–508.

    CAS  Google Scholar 

  • Beal, M.F., Fisher, J., Carr, D.B., and Martin, J.B., Effects of Neuroleptic Drugs on Brain Beta-Endorphin Immunoreactivity, Neurosci. Let., 1985, vol. 53, no. 2, pp. 173–178.

    Article  CAS  Google Scholar 

  • Bina, K.G. and Cincotta, A.H., Dopaminergic Agonists Normalize Elevated Hypothalamic Neuropeptide Y and Corticotropin-Releasing Hormone, Body Weight Gain, and Hyperglycemia in Ob/Ob Mice, Neuroendocrinol., 2000, vol. 71, no. 1, pp. 68–78.

    Article  CAS  Google Scholar 

  • Boules, M., McMahon, B., Warrington, L., et al., Neurotensin Analog Selective for Hypothermia over Antinociception and Exhibiting Atypical Neuroleptic-Like Properties, Brain Res., 2001, vol. 919, no. 1, pp. 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Brandon, C.L. and Steiner, H., Repeated Methylphenidate Treatment in Adolescent Rats Alters Gene Regulation in the Striatum, Eur. J. Neurosci., 2003, vol. 18, no. 6, pp. 1584–1592.

    Article  PubMed  Google Scholar 

  • Broad, R.M., McDonald, T.J., and Cook, M.A., Adenosine and 5-HT Inhibit Substance P Release from Nerve Endings in Myenteric Ganglia by Distinct Mechanisms, Am. J. Physiol., 1993, vol. 264, no. 3, pp. G454–461.

    PubMed  CAS  Google Scholar 

  • Caberlotto, L., Fuxe, K., Overstreet, D.H., et al., Alterations in Neuropeptide Y and Y1 Receptor mRNA Expression in Brains from an Animal Model of Depression: Region Specific Adaptation After Fluoxetine Treatment, Brain Res. Mol. Brain Res., 1998, vol. 59, no. 1, pp. 58–65.

    Article  PubMed  CAS  Google Scholar 

  • Cao, C., Han, J.H., Kim, S.Z., et al., Diverse Regulation of Atrial Natriuretic Peptide Secretion by Serotonin Receptor Subtypes, Cardiovasc. Res., 2003, vol. 59, no. 2, pp. 360–368.

    Article  PubMed  CAS  Google Scholar 

  • Chaiseha, Y., Youngren, O.M., and El Halawani, M.E., Dopamine Receptors Influence Vasoactive Intestinal Peptide Release from Turkey Hypothalamic Explants, Neuroendocrinol., 1997, vol. 65, no. 6, pp. 423–429.

    CAS  Google Scholar 

  • Chazov, E.I., Emotional Stress and Cardiovascular Diseases, Vestn. Akad. Med. Nauk SSSR, 1975, no. 8, pp. 3–8.

  • Contesse, V., Lefebvre, H., Lenglet, S., et al., Role of 5-HT in the Regulation of the Brain-Pituitary-Adrenal Axis: Effects of 5-HT on Adrenocortical Cells, Can. J. Physiol. Pharmacol., 2000, vol. 78, no. 12, pp. 967–983.

    Article  PubMed  CAS  Google Scholar 

  • Csaba, G., Kovacs, P., and Pallinger, E., Effect of a Single Neonatal Endorphin Treatment on the Hormone Content of Adult Rat White Blood Cells and Mast Cells, Cell. Biol. Int., 2003, vol. 27, no. 5, pp. 423–427.

    Article  PubMed  CAS  Google Scholar 

  • Daw, N.D., Kakade, S., and Dayan, P., Opponent Interactions between Serotonin and Dopamine, Neural. Networks, 2002, vol. 15, nos. 4–6, pp. 603–616.

    Article  PubMed  Google Scholar 

  • De Deurwaerdere, P., Stinus, L., and Spampinato, U., Opposite Change of in Vivo Dopamine Release in the Rat Nucleus Accumbens and Striatum That Follows Electrical Stimulation of Dorsal Raphe Nucleus: Role of 5-HT3 Receptors, J. Neurosci., 1998, vol. 18, no. 16, pp. 6528–6538.

    PubMed  Google Scholar 

  • De Weille, J.R., Fosset, M., Schmid-Antomarchi, H., and Lazdunski, M., Galanin Inhibits Dopamine Secretion and Activates a Potassium Channel in Pheochromocytoma Cells, Brain Res., 1989, vol. 485, no. 1, pp. 199–203.

    Article  PubMed  Google Scholar 

  • Deliva, R.D. and Ackermann, U., Atrial Natriuretic Peptide and Mechanisms of Cardiovascular Control. Role of Serotonergic Receptors, Am. J. Physiol., 1998, vol. 274, no. 3, pp. R711–717.

    PubMed  CAS  Google Scholar 

  • Durham, P.L., Sharma, R.V., and Russo, A.F., Repression of The Calcitonin Gene-Related Peptide Promoter By 5-Htl Receptor Activation, J. Neurosci., 1997, vol. 17, no. 24, pp. 9545–9553.

    PubMed  CAS  Google Scholar 

  • Esfahani, N., Bednar, I., Qureshi, G.A., and Sodersten, P., Inhibition of Serotonin Synthesis Attenuates Inhibition of Ingestive Behavior by CCK-8, Pharmacol. Biochem. Behav., 1995, vol. 51, no. 1, pp. 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Evers, B.M., Ishizuka, J., Townsend, C.M., et al., Expression of Neurotensin Messenger RNA in a Human Carcinoid Tumor, Ann. Surg., 1991, vol. 214, no. 4, pp. 448–454.

    PubMed  CAS  Google Scholar 

  • Fasmer, O.B., Post, C., and Hole, K., Increased Sensitivity to Intrathecal Substance P Following Chronic Administration of Zimelidine, Neurosci. Let., 1987, vol. 74, no. 1, pp. 81–84.

    Article  CAS  Google Scholar 

  • Fekete, M., Kadar, T., Penke, B., et al., Influence of Cholecystokinin Octapeptide Sulfate Ester on Brain Monoamine Metabolism in Rats, J. Neural. Transm., 1981, vol. 50, nos. 2–4, pp. 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Fredrickson, P., Boules, M., Yerbury, S., and Richelson, E., Novel Neurotensin Analog Blocks the Initiation and Expression of Nicotine-Induced Locomotor Sensitization, Brain Res., 2003, vol. 979, nos. 1–2, pp. 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Fuente-Fernandez, R., Ruth, T.J., Sossi, V., et al., Expectation and Dopamine Release: Mechanism of the Placebo Effect in Parkinson’s Disease, Science, 2001, vol. 293, no. 5532, pp. 1164–1166.

    Article  PubMed  Google Scholar 

  • Fujimiya, M., Yamamoto, H., and Kuwahara, A., Effect of VIP and PACAP on Basal Release of Serotonin from Isolated Vascularly and Luminally Perfused Rat Duodenum, Am. J. Physiol., 1998, vol. 275, no. 4, pp. G731–739.

    PubMed  CAS  Google Scholar 

  • Garris, P.A. and Ben-Jonathan, N., Regulation of Dopamine Release in Vitro from the Posterior Pituitary by Opioid Peptides, Neuroendocrinol., 1990, vol. 52, no. 4, pp. 399–404.

    CAS  Google Scholar 

  • Gordon, J. and Barnes, N.M., Lymphocytes Transport Serotonin and Dopamine: Agony or Ecstasy, Trends Immunol., 2003, vol. 24, no. 8, pp. 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Goudreau, J.L., Lookingland, K.J., and Moore, K.E., 5-Hydroxytryptamine2 Receptor-Mediated Regulation of Periventricular-Hypophysial Dopaminergic Neuronal Activity and the Secretion of Alpha-Melanocyte-Stimulating Hormone, J. Pharmacol. Exp. Ther., 1994, vol. 268, no. 1, pp. 175–179.

    PubMed  CAS  Google Scholar 

  • Gradin, K., Qadri, F., Nomikos, G.G., et al., Substance P Injection into the Dorsal Raphe Increases Blood Pressure and Scrotonin Release in Hippocampus of Conscious Rats, Eur. J. Pharmacol., 1992, vol. 218, nos. 2–3, pp. 363–367.

    Article  PubMed  CAS  Google Scholar 

  • Graf, M.V., Kastin, A.J., and Schoenenberger, G.A., Delta-Sleep-Inducing Peptide and Two of Its Analogs Reduce Nocturnal Increase of N-Acetyltransferase Activity in Rat Pineal Gland, J. Neurochem., 1985, vol. 44, no. 2, pp. 629–632.

    PubMed  CAS  Google Scholar 

  • Gromova, E.A., Bobkova, N.V., Plakkhinas, L.A., et al., The Role of the Brain Monoaminergic Systems in the Anti-Alcohol Action of Dermorphin and the Delta-Sleep Peptide, in Fiziol. zh. im. Sechenova, 1989, vol. 75, no. 5, pp. 633–637.

    CAS  Google Scholar 

  • Gruber, S.H., Nomikos, G.G., and Mathe, A.A., D-Amphetamine-Induced Increase in Neurotensin and Neuropeptide Y Outflow in the Ventral Striatum Is Mediated via Stimulation of Dopamine D1 and D2/3 Receptors, J. Neurosci. Res., 2002, vol. 69, no. 1, pp. 133–139.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, A., Saracibar, G., Casis, L., et al., Effects of Fluoxetine Administration on Neuropeptide Y and Orexins in Obese Zucker Rat Hypothalamus, Obes. Res., 2002, vol. 10, no. 6, pp. 532–540.

    PubMed  CAS  Google Scholar 

  • Hagan, D.M. and Brooks, A.N., Dopaminergic Regulation of Adrenocorticotrophic Hormone, Alpha-Melanocyte-Stimulating Hormone and Cortisol Secretion in the Ovine Fetus, J. Endocrinol., 1996, vol. 151, no. 3, pp. 439–447.

    Article  PubMed  CAS  Google Scholar 

  • Hagino, Y., Okuwa, M., and Moroji, T., Effects of Ceruletide and Haloperidol on the Hypothalamo-Pituitary Beta-Endorphin System and Brain Beta-Endorphin Contents in the Rat: with Special Reference to Effects of Ceruletide in Chronically Haloperidol-Treated Rats, Neuropeptides, 1991, vol. 18, no. 1, pp. 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Hamon, M., Gozlan, H., Bourgoin, S., et al., Opioid Receptors and Neuropeptides in the CNS in Rats Treated Chronically with Amoxapine Or Amitriptyline, Neuropharmacol., 1987, vol. 26, no. 6, pp. 531–539.

    Article  CAS  Google Scholar 

  • Hedlund, P.B., Aguirre, J.A., Narvaez, J.A., and Fuxe, K., Centrally Coinjected Galanin and a 5-HT1A Agonist Act Synergistically to Produce Vasodepressor Responses in the Rat, Eur. J. Pharmacol., 1991, vol. 204, no. 1, pp. 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder, C., Gewiss, M., De Potter, W., and De Witte, P., Regional Amines Levels in the Rat Brain Following Intra-Accumbens Cholecystokinin and Intraperitoneal Amphetamine Pre-Treatment, Arch. Int. Physiol. Biochim. Biophys., 1992, vol. 100, no. 3, pp. 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Hery, M., Faudon, M., and Hery, F., Effect of Vasoactive Intestinal Peptide on Serotonin Release in the Suprachiasmatic Area of the Rat. Modulation by Oestradiol, Peptides, 1984, vol. 5, no. 2, pp. 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Hommer, D.W. and Pert, A., The Actions of Opiates in the Rat Substantia Nigra: An Electrophysiological Analysis, Peptides, 1983, vol. 4, no. 5, pp. 603–608.

    Article  PubMed  CAS  Google Scholar 

  • Hua, X.Y. and Yaksh, T.L., Pharmacology of the Effects of Bradykinin, Serotonin, and Histamine on the Release of Calcitonin Gene-Related Peptide from C-Fiber Terminals in the Rat Trachea, J. Neurosci., 1993, vol. 13, no. 5, pp. 1947–1953.

    PubMed  CAS  Google Scholar 

  • Humpel, C., Saria, A., and Regoli, D., Injection of Tachykinins and Selective Neurokinin Receptor Ligands Into the Substantia Nigra Reticulata Increases Striatal Dopamine and 5-Hydroxytryptamine Metabolism, Eur. J. Pharmacol., 1991, vol. 195, no. 1, pp. 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Hyde, J.F. and Keller, B.K., Galanin Secretion from Anterior Pituitary Cells in Vitro Is Regulated by Dopamine, Somatostatin, and Thyrotropin-Releasing Hormone, Endocrinol., 1991, vol. 128, no. 2, pp. 917–922.

    Article  CAS  Google Scholar 

  • Idova, G.V., The Role of Cerebral Mediator Systems in Neuroimmunomodulation during Psychoemotional Stress, in Mater. konf. “Neirokhimiya: Fundamental’nye i prikladnye aspekty”. Moskva, 14–16 marta 2005 g. (Proc. Conf. “Neurochemistry: Fundamental and Applied Aspects.” Moscow, March 14—2005), Moscow, 2005, p. 99.

  • Irman-Florjanc, T. and Erjavec, F., The Effect of Adrenocorticotropin on Histamine and 5-Hydroxytryptamine Secretion from Rat Mast Cells, Agents Actions, 1984, vol. 14, nos. 3–4, pp. 454–457.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, S., Takashima, A., and Katsuura, G., Effect of Cholecystokinin Tetrapeptide Amide on the Metabolism of 5-Hydroxytryptamine in the Rat Brain, Neuropharmacol., 1988, vol. 27, no. 4, pp. 427–431.

    Article  CAS  Google Scholar 

  • Jerabek, I., Boulenger, J.P., Bradwejn, J., et al., CCK4-Induced Panic in Healthy Subjects II: Neurochemical Correlates, Eur. Neuropsychopharmacol., 1999, vol. 9, nos. 1–2, pp. 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Josselyn, S.A. and Beninger, R.J., Neuropeptide Y: Intraaccumbens Injections Produce a Place Preference That Is Blocked by Cis-Flupenthixol, Pharmacol. Biochem. Behav., 1993, vol. 46, no. 3, pp. 543–552.

    Article  PubMed  CAS  Google Scholar 

  • Kagamiishi, Y., Yamamoto, T., and Watanabe, S., Hippocampal Serotonergic System Is Involved in Anxiety-Like Behavior Induced by Corticotropin-Releasing Factor, Brain Res., 2003, vol. 991, nos. 1–2, pp. 212–221.

    Article  PubMed  CAS  Google Scholar 

  • Kameyama, T., Ukai, M., and Noma, S., Psychopharmacological Study of Enkephalins, with Special Reference to the Relation between Behavioral Profiles and Brain Monoamines, Yakubutsu Seishin Kodo, 1981, vol. 1, no. 1, pp. 21–28.

    PubMed  CAS  Google Scholar 

  • Kaneyuki, T., Morimasa, T., and Shohmori, T., Action of Peripherally Administered Cholecystokinin on Monoaminergic and GABAergic Neurons in the Rat Brain, Acta. Med. Okayama, 1989, vol. 43, no. 3, pp. 153–159.

    PubMed  CAS  Google Scholar 

  • Kaptchuk, T.J., The Placebo Effect in Alternative Medicine: Can the Performance of a Healing Ritual Have Clinical Significance, Ann. Intern. Med., 2002, vol. 136, no. 11, pp. 817–825.

    PubMed  Google Scholar 

  • Kehr, J., Yoshitake, T., and Wang, F.H., et al., Galanin Is a Potent in Vivo Modulator of Mesencephalic Serotonergic Neurotransmission, Neuropsychopharmacol., 2002, vol. 27, no. 3, pp. 341–356.

    Article  CAS  Google Scholar 

  • Klusha, V.E., Abissova, N.A., Mutsenietse, R.K., et al., Comparative Study of Substance P and Its Fragments: Analgesic Properties, Effect on Behavior and Monoaminergic Processes, Byul. Eksperim. Biologi I Meditsiny, 1981, vol. 92, no. 12, pp. 692–694.

    CAS  Google Scholar 

  • Kmieciak-Kolada, K. and Kowalski, J., Involvement of the Central Serotoninergic System in the Changes of Leu-Enkephalin Level in Discrete Rat Brain Areas, Neuropeptides, 1986, vol. 7, no. 4, pp. 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, S., Ueda, S., Ikeda, M., and Kamikawa, Y., Calcitonin Gene-Related Peptide Facilitates Serotonin Release from Guinea-Pig Colonic Mucosa via Myenteric Neurons and Tachykinin NK2/NK3 Receptors, Br. J. Pharmacol., 2004, vol. 141, no. 3, pp. 385–390.

    Article  PubMed  CAS  Google Scholar 

  • Koroleva, S.V. and Ashmarin, I.P., Functional Continuum of Regulatory Peptides (RPs): Vector Model of RP-Effects Representation, J. Theor. Biol., 2002, vol. 216, no. 3, pp. 257–271.

    Article  PubMed  CAS  Google Scholar 

  • Kramarova, L.I., Lee, T.F., Cui, Y., and Wang, L.C., State-Dependent Variation in the Inhibitory Effect of [D-Ala2, D-Leu5]-Enkephalin on Hippocampal Serotonin Release in Ground Squirrels, Life Sci., 1991, vol. 48, no. 2, pp. 175–181.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, D.Y., Co-Administration of Dopamine D1 and D2 Agonists Additively Decreases Daily Food Intake, Body Weight and Hypothalamic Neuropeptide Y Level in Rats, J. Biomed. Sci., 2002, vol. 9, no. 2, pp. 126–132.

    PubMed  CAS  Google Scholar 

  • Lamacz, M., Tonon, M.C., Leboulenger, F., et al., Effect of Serotonin on Alpha-Melanocyte-Stimulating Hormone Secretion from Perfused Frog Neurointermediate Lobe: Evidence for the Presence of Serotonin-Containing Cells in the Frog Pars Intermedia, J. Endocrinol., 1989, vol. 122, no. 1, pp. 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Laprade, N. and Soghomonian, J.J., Gene Expression of the GAD67 and GAD65 Isoforms of Glutamate Decarboxylase Is Differentially Altered in Subpopulations of Striatal Neurons in Adult Rats Lesioned with 6-OHDA as Neonates, Synapse, 1999, vol. 33, no. 1, pp. 36–48.

    Article  PubMed  CAS  Google Scholar 

  • Li, A.H., Yeh, T.H., Tan, P.P., et al., Neurotensin Excitation of Serotonergic Neurons in the Rat Nucleus Raphe Magnus: Ionic and Molecular Mechanisms, Neuropharmacol., 2001, vol. 40, no. 8, pp. 1073–1083.

    Article  CAS  Google Scholar 

  • Li, X.C., Li, H.D., and Zhao, B.Y., Serotonin of Hippocampus and Hypothalamus Taking Part in the Analgesic Effect of Adrenocorticotropic Hormone in Rats, Zhongguo Yao Li Xue Bao, 1990, vol. 11, no. 1, pp. 89–92.

    CAS  Google Scholar 

  • Lindblom, J., Opmane, B., Mutulis, F., et al., The MC4 Receptor Mediates Alpha-MSH Induced Release of Nucleus Accumbens Dopamine, Neuroreport, 2001, vol. 12, no. 10, pp. 2155–2158.

    Article  PubMed  CAS  Google Scholar 

  • Linthorst, A.C., Penalva, R.G., Flachskamm, C., et al., Forced Swim Stress Activates Rat Hippocampal Serotonergic Neurotransmission Involving a Corticotropin-Releasing Hormone Receptor-Dependent Mechanism, Eur. J. Neurosci., 2002, vol. 16, no. 12, pp. 2441–2452.

    Article  PubMed  Google Scholar 

  • Lodge, D.J., Short, J.L., Mercer, L.D., et al., CCK/Dopamine Interactions in Fawn-Hooded and Wistar-Kyoto Rat Brain, Peptides, 2000, vol. 21, no. 3, pp. 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Loh, H.H., Brase, D.A., Sampath-Khanna, S., et al., Beta-Endorphin in Vitro Inhibition of Striatal Dopamine Release, Nature, 1976, vol. 264, no. 5586, pp. 567–568.

    Article  PubMed  CAS  Google Scholar 

  • Majeed, N.H., Silberring, J., and Przewlocki, R., The in Vitro Release of Immunoreactive Dynorphin and Alpha-Neoendorphin from the Perfused Rat Duodenum, Life Sci., 1987, vol. 41, no. 4, pp. 497–504.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, M., Yoshioka, M., Togashi, H., et al., Functional Regulation by Dopamine Receptors of Serotonin Release from the Rat Hippocampus: In Vivo Microdialysis Study, Naunyn-Schmiedeberg’s Arch. Pharmacology, 1996, vol. 353, no. 6, pp. 621–629.

    Article  CAS  Google Scholar 

  • Mirochnik, V., Bosler, O., Tillet, Y., et al., Long-Lasting Effects of Serotonin Deficiency on Differentiating Peptidergic Neurons in the Rat Suprachiasmatic Nucleus, Int. J. Dev. Neurosci., 2005, vol. 23, no. 1, pp. 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Nakazi, M., Bauer, U., Nickel, T., et al., Inhibition of Serotonin Release in the Mouse Brain Via Presynaptic Cannabinoid CB1 Receptors, Naunyn Schmiedebergs Arch Pharmacol., 2000, vol. 361, no. 1, pp. 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff, C.B. and Owens, M.J., Pharmacologic Differences among the SSRIs: Focus on Monoamine Transporters and the HPA Axis, CNS Spectr, 2004, vol. 9, no. Suppl. 4, pp. 23–31.

    PubMed  Google Scholar 

  • Oaknin, S., Vaughan, M.K., Troiani, M.E., et al., Injections of Alpha-Melanocyte Stimulating Hormone Affect Pineal Serotonin, Melatonin and N-Acetyltransferase Activity, Comp. Biochem. Physiol. C, 1987, vol. 86, no. 1, pp. 23–26.

    Article  PubMed  CAS  Google Scholar 

  • Ogren, S.O., Schott, P.A., Kehr, J., et al., Modulation of Acetylcholine and Serotonin Transmission by Galanin. Relationship to Spatial and Aversive Learning, Ann. New York Acad. Sci., 1998, vol. 863, pp. 342–363.

    Article  CAS  Google Scholar 

  • Osei-Owusu, P., James, A.E., Crane, J., and Scrogin, K.E., 5-HT1A Receptors in the Paraventricular Nucleus of the Hypothalamus Mediate Oxytocin and Adrenocorticotropin Hormone Release As Well As Some Behavioral Components of the Serotonin Syndrome, J. Pharmacol. Exp. Ther., 2005, vol. 313, no. 3, pp. 1324–1330.

    Article  PubMed  CAS  Google Scholar 

  • Passarelli, F. and Costa, T., Mu and Delta Opioid Receptors Inhibit Serotonin Release in Rat Hippocampus, J. Pharmacol. Exp. Ther., 1989, vol. 248, no. 1, pp. 299–305.

    PubMed  CAS  Google Scholar 

  • Price, M.L., Kirby, L.G., Valentino, R.J., and Lucki, I., Evidence for Corticotropin-Releasing Factor Regulation of Serotonin in the Lateral Septum During Acute Swim Stress: Adaptation Produced by Repeated Swimming, Psychopharmacol. (Berl), 2002, vol. 162, no. 4, pp. 406–414.

    Article  CAS  Google Scholar 

  • Pugsley, T.A. and Lippmann, W., Synthetic Melanocyte Stimulating Hormone Release-Inhibiting Factor (MIF). Part III: Effect of L-Prolyl-N-methyl-D-leucyl-glycinamide and MIF on biogenic amine turnover, Arzneimittelforschung, 1977, vol. 27, vol. 27, no. 12, pp. 2293–2296.

    PubMed  CAS  Google Scholar 

  • Rada, P., Mark, G.P., and Hoebel, B.G., Galanin in the Hypothalamus Raises Dopamine and Lowers Acetylcholine Release in the Nucleus. Accumbens: A Possible Mechanism for Hypothalamic Initiation of Feeding Behavior, Brain Res., 1998, vol. 798, nos. 1–2, pp. 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Reis, L.C., Ramalho, M.J., Favaretto, A.L., et al., Participation of the Ascending Serotonergic System in the Stimulation of Atrial Natriuretic Peptide Release, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, no. 25, pp. 12022–12026.

    Article  PubMed  CAS  Google Scholar 

  • Renyi, L., Evenden, J.L., Fowler, C.J., et al., The Pharmacological Profile of (R)-3,4-Dihydro-N-Isopropyl-3-(N-Isopropyl-N-Propylamino)-2H-1-Benzopyran-5-Carboxamide, a Selective 5-Hydroxytryptamine (1A) Receptor Agonist, J. Pharmacol. Exp. Ther., 2001, vol. 299, no. 3, pp. 883–893.

    PubMed  CAS  Google Scholar 

  • Reum, T., Schafer, U., and Marsden, C.A., Cholecystokinin Increases Extracellular Dopamine Overflow in the Anterior Nucleus Accumbens Via CCK(B) Receptors in the VTA Assessed by in Vivo Voltammetry, Neuropeptides, 1997, vol. 31, no. 1, pp. 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Rex, A., Marsden, C.A., and Fink, H., Cortical 5-HT-CCK Interactions and Anxiety-Related Behaviour of Guinea-Pigs: A Microdialysis Study, Neurosci. Let., 1997, vol. 228, no. 2, pp. 79–82.

    Article  CAS  Google Scholar 

  • Reynier-Rebuffel, A.M., Mathiau, P., Callebert, J., et al., Substance P, Calcitonin Gene-Related Peptide, and Capsaicin Release Serotonin from Cerebrovascular Mast Cells, Am. J. Physiol., 1994, vol. 267, no. 5, pp. R1421–1429.

    PubMed  CAS  Google Scholar 

  • Robert, J.J., Orosco, M., Rouch, C., et al., Effects of Opiate Agonists and an Antagonist on Food Intake and Brain Neurotransmitters in Normophagic and Obese “Cafeteria” Rats, Pharmacol. Biochem. Behav., 1989, vol. 34, no. 3, pp. 577–583.

    Article  PubMed  CAS  Google Scholar 

  • Rompre, P.P. and Gratton, A., Mesencephalic Microinjections of Neurotensin-(1-13) and Its C-Terminal Fragment, Neurotensin-(8-13), Potentiate Brain Stimulation Reward, Brain Res., 1993, vol. 616, nos. 1–2, pp. 154–162.

    Article  PubMed  CAS  Google Scholar 

  • Rompre, P.P., Psychostimulant-Like Effect of Central Microinjection of Neurotensin on Brain Stimulation Reward, Peptides, 1995, vol. 16, no. 8, pp. 1417–1420.

    Article  PubMed  CAS  Google Scholar 

  • Roth-Deri, I., Zangen, A., Aleli, M., et al., Effect of Experimenter-Delivered and Self-Administered Cocaine on Extracellular Beta-Endorphin Levels in the Nucleus Accumbens, J. Neurochem., 2003, vol. 84, no. 5, pp. 930–938.

    Article  PubMed  CAS  Google Scholar 

  • Sacerdote, P., Rubboli, F., Locatelli, L., et al., Pharmacological Modulation of Neuropeptides in Peripheral Mononuclear Cells, J. Neuroimmunol., 1991, vol. 32, no. 1, pp. 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Saland, L.C., Samora, A., Apodaca, A., and Ramirez, D., Regulation of Pituitary Beta-Endorphin Secretion in Aging Rats: In Vitro Responsiveness to Dopamine, Life Sci., 1995, vol. 56, no. 17, pp. 1415–1425.

    Article  PubMed  CAS  Google Scholar 

  • Saracibar, G., Casado, A., Rodriguez, V.M., et al., Nefazodone Alters NPY Immunostaining in Rat Arcuate Paraventricular Projection without Changes in Food Intake and Body Weight, Nutr. Neurosci., 2002, vol. 5, no. 5, pp. 353–358.

    Article  PubMed  CAS  Google Scholar 

  • Schlicker, E., Gross, G., Fink, K., et al., Serotonin Release in the Rat Brain Cortex Is Inhibited by Neuropeptide Y but Not Affected by ACTH1-24, Angiotensin II, Bradykinin and Delta-Sleep-Inducing Peptide, Naunyn Schmiedebergs Arch. Pharmacol., 1991, vol. 342, no. 2, pp. 117–122.

    Article  Google Scholar 

  • Schlosser, B., Kudernatsch, M.B., and Sutor, B., Ten Bruggencate G. Delta, Mu and Kappa Opioid Receptor Agonists Inhibit Dopamine Overflow in Rat Neostriatal Slices, Neurosci. Let., 1995, vol. 191, nos. 1–2, pp. 126–130.

    Article  CAS  Google Scholar 

  • Shabanov, P.D., Lebedev, A.A., and Meshcherov, Sh.K., Dofamin i podkreplyayushchie sistemy mozga (Dopamine and Reinforcing Systems of the Brain), St. Petersburg: Lan’, 2002.

    Google Scholar 

  • Shandra, A.A., Godlevskii, L.S., Brusentsov, A.I., et al., Delta-Sleep-Inducing Peptide and Its Analogs and the Serotoninergic System in the Development of Anticonvulsive Influences, Neurosci. Behav. Physiol., 1998, vol. 28, no. 5, pp. 521–526.

    PubMed  CAS  Google Scholar 

  • Sher, L., The Placebo Effect on Mood and Behavior: Possible Role of Opioid and Dopamine Modulation of the Hypothalamic-Pituitary-Adrenal System, Forsch Komplementarmed Klass Naturheilkd, 2003, vol. 10, no. 2, pp. 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Shirayama, Y., Mitsushio, H., Takashima, M., et al., Reduction of Substance P After Chronic Antidepressants Treatment in the Striatum, Substantia Nigra and Amygdala of the Rat, Brain Res., 1996, vol. 739, nos. 1–2, pp. 70–78.

    Article  PubMed  Google Scholar 

  • Shlik, J., Aluoja, A., Vasar, V., et al., Effects of Citalopram Treatment on Behavioural, Cardiovascular and Neuroendocrine Response to Cholecystokinin Tetrapeptide Challenge in Patients with Panic Disorder, J. Psychiatry Neurosci., 1997, vol. 22, no. 5, pp. 332–340.

    PubMed  CAS  Google Scholar 

  • Signs, S.A., Liu, B., Wolford, J., and Carrillo, A.J., Serotonergic Involvement in the Regulation of Prolactin and Vasoactive Intestinal Peptide mRNA Expression in the Rat Anterior Pituitary, Mol. Cell. Endocrinol., 1994, vol. 105, no. 2, pp. 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Sil’kis, I.G., The Influence of Neuromodulators on the Synaptic Plasticity in Dopaminergic Structures of the Midbrain (Hypothetical Mechanism), Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2003, vol. 53, no. 4, pp. 464–479.

    CAS  Google Scholar 

  • Singhal, R.L. and Rastogi, R.B., MIF-1: Effects on Norepinephrine, Dopamine and Serotonin Metabolism in Certain Discrete Brain Regions, Pharmacol. Biochem. Behav., 1982, vol. 16, no. 2, pp. 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Sivam, S.P., Influence of Monoamine Oxidase Inhibitors on Striatonigral Dynorphin System: A Study with Deprenyl and Clorgyline, Neuropeptides, 1993, vol. 25, no. 1, pp. 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Soliman, K.F., Mash, D.C., and Walker, C.A., The Effect of Altered 5-Hydroxytryptamine Levels on Beta-Endorphin Content in Rat Brain, Proc. Soc. Exp. Biol. Med., 1986, vol. 182, no. 2, pp. 187–193.

    PubMed  CAS  Google Scholar 

  • Spanagel, R. and Weiss, F., The Dopamine Hypothesis of Reward: Past and Current Status, TINS, 1999, vol. 22, no. 11, pp. 521–527.

    PubMed  CAS  Google Scholar 

  • Staubli, U. and Huston, J.P., Central Action of Substance P: Possible Role in Reward, Behav. Neural. Biol., 1985, vol. 43, no. 1, pp. 100–108.

    Article  PubMed  CAS  Google Scholar 

  • Stepien, A., Jagustyn, P., Trafny, E.A., and Widerkiewicz, K., Suppressing Effect of the Serotonin 5HT1B/D Receptor Agonist Rizatriptan on Calcitonin Gene-Related Peptide (CGRP) Concentration in Migraine Attacks, Neurol. Neurochir. Pol., 2003, vol. 37, no. 5, pp. 1013–1023.

    PubMed  Google Scholar 

  • Sullivan, N.R., Crane, J.W., Damjanoska, K.J., et al., Tandospirone Activates Neuroendocrine and ERK (MAP Kinase) Signaling Pathways Specifically Through 5-HT1A Receptor Mechanisms in Vivo, Naunyn Schmiedebergs Arch. Pharmacol., 2005, vol. 371, no. 1, pp. 18–26.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, J., Kariya, K., and Nomura, M., Angiotensin II Reduces Serotonin Release in the Rat Subfornical Organ Area, Peptides, 2003, vol. 24, no. 6, pp. 881–887.

    Article  PubMed  CAS  Google Scholar 

  • Tao, R. and Auerbach, S.B., Opioid Receptor Subtypes Differentially Modulate Serotonin Efflux in the Rat Central Nervous System, J. Pharmacol. Exp. Ther., 2002, vol. 303, no. 2, pp. 549–556.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M.D., de Ceballos, M.L., Jenner, P., and Marsden, C.D., Acute Effects of D-1 and D-2 Dopamine Receptor Agonist and Antagonist Drugs on Basal Ganglia [Met5]-and [Leu5]-Enkephalin and Neurotensin Content in the Rat, Biochem. Pharmacol., 1991, vol. 41, no. 9, pp. 1385–1391.

    Article  PubMed  CAS  Google Scholar 

  • Tekes, K., Hantos, M., and Csaba, G., Single Neonatal Treatment with Beta-Endorphin (Hormonal Imprinting) Extremely Enhances Nocistatin Level of Cerebrospinal Fluid in Adult Rats, Life Sci., 2004, vol. 74, no. 16, pp. 1993–1997.

    Article  PubMed  CAS  Google Scholar 

  • Tiligada, E. and Wilson, J.F., Regulation of Alpha-Melanocyte-Stimulating Hormone Release from Superfused Slices of Rat Hypothalamus by Serotonin and the Interaction of Serotonin with the Dopaminergic System Inhibiting Peptide Release, Brain Res., 1989, vol. 503, no. 2, pp. 225–228.

    Article  PubMed  CAS  Google Scholar 

  • Tramontana, M., Giuliani, S., Del Bianco, E., et al., Effects of Capsaicin and 5-HT3 Antagonists on 5-Hydroxytryptamine-Evoked Release of Calcitonin Gene-Related Peptide in the Guinea-Pig Heart, Br. J. Pharmacol., 1993, vol. 108, no. 2, pp. 431–435.

    PubMed  CAS  Google Scholar 

  • Tsuda, K., Tsuda, S., Nishio, I., et al., Effects of Galanin on Dopamine Release in the Central Nervous System of Normotensive and Spontaneously Hypertensive Rats, Am. J. Hypertens., 1998, vol. 11, no. 12, pp. 1475–1479.

    Article  PubMed  CAS  Google Scholar 

  • Urwyler, S. and Tabakoff, B., Stimulation of Dopamine Synthesis and Release by Morphine and D-Ala2-D-Leu5-Enkephalin in the Mouse Striatum in Vivo, Life Sci., 1981, vol. 28, no. 20, pp. 2277–2286.

    Article  PubMed  CAS  Google Scholar 

  • Vacher, C.M., Fretier, P., Creminon, C., et al., Monoaminergic Control of Vasopressin and VIP Expression in the Mouse Suprachiasmatic Nucleus, J. Neurosci. Res., 2003, vol. 71, no. 6, pp. 791–801.

    Article  PubMed  CAS  Google Scholar 

  • Van de Kar, L.D., Javed, A., Zhang, Y., et al., 5-HT2A Receptors Stimulate ACTH, Corticosterone, Oxytocin, Renin, and Prolactin Release and Activate Hypothalamic CRF and Oxytocin-Expressing Cells, J. Neurosci., 2001, vol. 21, no. 10, pp. 3572–3579.

    PubMed  Google Scholar 

  • Vase, L., Robinson, M.E., Verne, G.N., and Price, D.D., The Contributions of Suggestion, Desire, and Expectation to Placebo Effects in Irritable Bowel Syndrome Patients. An Empirical Investigation, Pain, 2003, vol. 105, nos. 1–2, pp. 17–25.

    Article  PubMed  Google Scholar 

  • Vedder, H. and Otten, U., Biosynthesis and Release of Tachykinins from Rat Sensory Neurons in Culture, J. Neurosci. Res., 1991, vol. 30, no. 2, pp. 288–299.

    Article  PubMed  CAS  Google Scholar 

  • Voigt, J.P., Sohr, R., and Fink, H., CCK-8S Facilitates 5-HT Release in the Rat Hypothalamus, Pharmacol. Biochem. Behav., 1998, vol. 59, no. 1, pp. 179–182.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, T., Pakala, R., Katagiri, T., and Benedict, C.R., Serotonin Potentiates Angiotensin II-Induced Vascular Smooth Muscle Cell Proliferation, Atherosclerosis, 2001, vol. 159, no. 2, pp. 269–279.

    Article  PubMed  CAS  Google Scholar 

  • Weatherspoon, J.K., Frank, A.R., and Werling, L.L., Neurotensin, N-Acetyl-Aspartylglutamate and Beta-Endorphin Modulate [3H]Dopamine Release from Guinea Pig Nucleus Accumbens, Prefrontal Cortex and Caudate-Putamen, Neuropeptides, 1996, vol. 30, no. 5, pp. 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Widdowson, P.S. and Holman, R.B., Ethanol-Induced Increase in Endogenous Dopamine Release May Involve Endogenous Opiates, J. Neurochem., 1992, vol. 59, no. 1, pp. 157–163.

    PubMed  CAS  Google Scholar 

  • Yau, W.M., Dorsett, J.A., and Youther, M.L., Modulation of Submucosal Cholinergic Neurons by 5-Hydroxytryptamine and Neuropeptides, Am. J. Physiol., 1990, vol. 259, no. 6, pp. G1019–1024.

    PubMed  CAS  Google Scholar 

  • Youngren, O., Chaiseha, Y., Al-Zailaie, K., et al., Regulation of Prolactin Secretion by Dopamine at the Level of the Hypothalamus in the Turkey, Neuroendocrinol., 2002, vol. 75, no. 3, pp. 185–192.

    Article  CAS  Google Scholar 

  • Yuferov, V., Fussell, D., LaForge, K.S., et al., Redefinition of the Human Kappa Opioid Receptor Gene (OPRK1) Structure and Association of Haplotypes with Opiate Addiction, Pharmacogenetics, 2004, vol. 14, no. 12, pp. 793–804.

    Article  PubMed  CAS  Google Scholar 

  • Yuwiler, A., Vasoactive Intestinal Peptide Stimulation of Pineal Serotonin-N-Acetyltransferase Activity: General Characteristics, J. Neurochem., 1983, vol. 41, no. 1, pp. 146–153.

    PubMed  CAS  Google Scholar 

  • Zangen, A., Nakash, R., Roth-Deri, I., et al., Impaired Release of Beta-Endorphin in Response to Serotonin in a Rat Model of Depression, Neurosci., 2002, vol. 110, no. 3, pp. 389–393.

    Article  CAS  Google Scholar 

  • Zhang, R., Tachibana, T., Takagi, T., et al., Serotonin Modifies Corticotropin-Releasing Factor-Induced Behaviors of Chicks, Behav. Brain Res., 2004, vol. 151, nos. 1–2, pp. 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Butelman, E.R., Schlussman, S.D., et al., Effect of the Endogenous Kappa Opioid Agonist Dynorphin A(1–17) on Cocaine-Evoked Increases in Striatal Dopamine Levels and Cocaine-Induced Place Preference in C57BL/6J Mice, Psychopharmacol. (Berl), 2004, vol. 172, no. 4, pp. 422–429.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Koroleva, A.A. Nikolaeva, I.P. Ashmarin, 2006, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2006, No. 4, pp. 457–469.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koroleva, S.V., Nikolaeva, A.A. & Ashmarin, I.P. Interactions between dopamine, serotonin, and other reward factor. Biol Bull Russ Acad Sci 33, 370–381 (2006). https://doi.org/10.1134/S106235900604008X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235900604008X

Keywords

Navigation