Skip to main content
Log in

Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes

  • Keynote paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

This article discusses the extensive research that has been conducted on the use of mutualistic bacterial and fungal endophytes for the biological control of plant-parasitic nematodes. This review deals in particular with the modes of action of multitrophic interactions involving endophytic bacteria or fungi that have biological control activity towards the root-knot nematode, Meloidogyne incognita, and the potato cyst nematode, Globodera pallida, on tomato or potato. The bacterial and fungal endophytes discussed here are those that: (1) have the ability to colonise the endorhiza at some point in their life-cycle; (2) can grow saprophytically in the soil or in the rhizosphere; and (3) have plant health promoting activity and antagonistic activity towards sedentary plant-parasitic nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alabouvette C, Schippers B, Lemanceau P, Bakker PAHM (1998) Biological control of Fusarium wilts: toward development of commercial products. In ‘Plant-microbe interactions and biological control’. (Eds GJ Boland, LD Kuykendall) pp. 15–36. (Marcel Dekker: New York)

    Google Scholar 

  • Alabouvette C, Edel V, Lemanceau P, Olivain C, Recorbet G, Steinberg C (2001) Diversity and interactions among strains of Fusarium oxysporum: application and biological control. In ‘Biotic interactions in plantpathogen associations’. (Eds MJ Jeger, NJ Spence) pp. 131–157. (CAB International: London)

    Chapter  Google Scholar 

  • Anita B, Rajendran G, Samiyappan R (2004) Induction of systemic resistance in tomato against root-knot nematode, Meloidogyne incognita by Pseudomonas fluorescens. Nematologica Mediterranea 32, 47–51.

    Google Scholar 

  • Dababat AA (2007) Importance of the mutualistic endophyte Fusarium oxysporum 162 for enhancement of tomato transplants and the biological control of the root-knot nematode Meloidogyne incognita, with particular reference to mode-of-action. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.

    Google Scholar 

  • Dababat AA, Sikora RA (2007a) Influence of Fusarium oxysporum 162, a non-pathogenic fungus, induced systemic resistance toward Meloidogyne incognita on tomato. Nematology, in press.

  • Dababat AA, Sikora RA (2007b) Effects of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and penetration on tomato. Nematology, in press.

  • Fuchs JG, Moënne-Loccoz Y, Défago G (1997) Non-pathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Disease 81, 492–496.

    Article  Google Scholar 

  • Hackenberg C (1993) EinfluΒ abiotischer und biotischer Faktoren auf die antagonistische Wirkung des Rhizobakterium Agrobacterium radiobacter G12 gegenüber G. pallida an Kartoffel. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany. [In German]

    Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. In ‘Biotic interactions in plant-pathogen associations’. (Eds MJ Jeger, NJ Spence) pp. 87–119. (CAB International: London)

    Chapter  Google Scholar 

  • Hallmann J, Sikora RA (1994a) Occurrence of plant parasitic nematodes and nonpathogenic species of Fusarium in tomato plants in Kenya and their role as mutualistic synergists for biological control of root knot nematodes. International Journal of Pest Management 40, 321–325.

    Article  Google Scholar 

  • Hallmann J, Sikora RA (1994b) Influence of F. oxysporum, a mutualistic fungal endophyte, on M. incognita of tomato. Journal of Plant Diseases and Protection 101, 475–481.

    Google Scholar 

  • Hallmann J, Sikora RA (1996) Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soil borne plant pathogenic fungi. European Journal of Plant Pathology 102, 155–162. doi: 10.1007/BF01877102

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997a) Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43, 895–914.

    Article  CAS  Google Scholar 

  • Hallmann J, Rodriguez-Kabana R, Kloepper JW (1997b) Nematode interactions with endophytic bacteria. Plant-growth-promoting rhizobacteria: present status and future prospects. In ‘Proceedings of the fourth international workshop on plant growth-promoting rhizobacteria, Japan-OECD Joint Workshop’. pp. 243–245. (OECD: Paris)

    Google Scholar 

  • Hallmann J, Hasky-Günther K, Hoffmann-Hergarten S, Reitz M, Sikora RA (1998a) Similarities and differences in the mode-of-action of two rhizosphere bacteria antagonistic to Globodera pallida on potato. Biological Control of Fungal and Bacterial Plant Pathogens IOBC Bulletin 21, 41–43.

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Rodriguez-Kabana R, Kloepper JW (1998b) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biology & Biochemistry 30, 925–937. doi: 10.1016/S0038-0717(97)00183-1

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Miller WG, Sikora RA, Lindow SE (2001) Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91, 415–422.

    Article  CAS  PubMed  Google Scholar 

  • Hallmann J, Faupel A, Krechel A, Sikora RA, Berg G (2004) Endophytic bacteria and biological control of nematodes. In ‘Multitrophic interactions in soil. IOBC/WPRS Bulletin 27 (1)’. (Eds RA Sikora, S Gowen, R Hauschild, S Kiewnick) pp. 83–94. (IOBC: Bad Honnef, Germany)

    Google Scholar 

  • Hasky-Günther K (1996) Untersuchungen zum Wirkungsmechanismus der antagonistischen Rhizosphärebakterien Agrobacterium radiobacter (Isolat G12) und Bacillus sphaericus (Isolat B43) gegenüber dem Kartoffelzystennematoden Globodera pallida an Kartoffel. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany. [In German]

    Google Scholar 

  • Hasky-Günther K, Sikora RA (1995) Induced resistance: a mechanism induced systemically throughout the root system by rhizosphere bacteria towards the potato cyst nematode Globodera pallida. Nematologica 41, 306.

    Google Scholar 

  • Hasky-Günther K, Hoffmann-Hergarten S, Sikora RA (1998) Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundamental and Applied Nematology 21, 511–517.

    Google Scholar 

  • Hauschild R, Hallmann J, Sikora RA (2000) Fusarium oxysporum and Meloidogyne incognita on tomato can be controlled by antagonistic rhizobacteria. Communications in Agricultural and Applied Biological Sciences 65, 527–528.

    Google Scholar 

  • Hauschild R, Mwangi M, Olzem B, Sikora RA (2001) Characterization of antagonistic rhizobacteria to control Meloidogyne incognita and Fusarium oxysporum on tomato. Phytopathology 91, 37.

    Google Scholar 

  • Hussey RS, Roncadori RW (1982) Vesicular-arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Disease 66, 9–14.

    Article  Google Scholar 

  • Jones JT, Robertson L, Perry RN, Robertson WM (1997) Changes in gene expression during stimulation and hatching of the potato cyst nematode Globodera rostochiensis. Parasitology 114, 309–315. doi: 10.1017/S0031182096008451

    Article  Google Scholar 

  • Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J (994) Induction of systemic acquired resistance in plants by chemicals. Annual Review of Phytopathology 32, 439–459. doi: 10.1146/annurev.py.32.090194.002255

    Article  Google Scholar 

  • Kroon BAM, Scheffer RJ, Elgersma DM (1991) Induced resistance in tomato plants against Fusarium wilt invoked by Fusarium oxysporum f.sp. dianthi Netherlands Journal of Plant Pathology 97, 401–408.

    Article  Google Scholar 

  • Leeman M, Pelt JA, van Ouden FM, den Heinsbroek M, Bakker PAHM, Schippers B (1995a) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85, 1021–1027.

    Article  CAS  Google Scholar 

  • Leeman M, Pelt JA, van Ouden FM, den Heinsbroek M, Bakker PAHM, Schippers B (1995b) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. European Journal of Plant Pathology 101, 655–664. doi: 10.1007/ BF01874869

    Article  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85, 695–698.

    Article  Google Scholar 

  • van Loon LC, van Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36, 453–483. doi: 10.1146/annurev.phyto.36.1.453

    Article  PubMed  Google Scholar 

  • Mahdy M (2002) Biologische Bekämpfung pflanzenparasitärer Nematoden mit antagonistischen Bakterien an verschiedenen Wirtspflanzen. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany. [In German]

    Google Scholar 

  • Mahdy M, Hallmann J, Sikora RA (2001a) Biological control effectivity of Rhizobium etli G12 towards sedentary and migratory nematodes on various host plants. Phytopathology 91, S138.

    Google Scholar 

  • Mahdy M, Hallmann J, Sikora RA (2001b) Influence of plant species on the biological control activity of the antagonistic rhizobacterium Rhizobium etli strain G12 toward the root-knot nematode, Meloidogyne incognita. Communications in Agricultural and Applied Biological Sciences 66, 655–662.

    CAS  Google Scholar 

  • Mandeel Q, Baker R (1991) Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of non-pathogenic Fusarium oxysporum. Phytopathology 81, 462–469.

    Article  Google Scholar 

  • Munif A (2001) Studies on the importance of endophytic bacteria for the biological control of the root-knot nematode Meloidogyne incognita on tomato. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.

    Google Scholar 

  • Munif A, Hallmann J, Sikora RA (2001) Induced systemic resistance of selected endophytic bacteria against Meloidogyne incognita on tomato. Communications in Agricultural and Applied Biological Sciences 66, 663–669.

    CAS  Google Scholar 

  • Mwangi M (2002) Mechanisms of action in biological control of Fusarium oxysporum f.sp. lycopersici in tomato using rhizobacteria. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.

    Google Scholar 

  • Mwangi M, Hauschild R, Mutitu EW, Sikora RA (2002) Rhizobacteriainduced changes in tomato metabolism and their relationship with induced resistance against Fusarium oxysporum f.sp. lycopersici. Communications in Agricultural and Applied Biological Sciences 67, 145–147.

    CAS  Google Scholar 

  • Padgham J, Sikora RA (2006) The potential for Meloidogyne graminicola biological control in rice under oxic and anoxic soil environments. IOBC Bulletin 29, 111–116.

    Google Scholar 

  • Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Protection, in press.

  • van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81, 728–734.

    Article  Google Scholar 

  • Perry RN (1989) Dormancy and hatching of nematode eggs. Parasitology Today (Personal Ed.) 5, 377–383. doi: 10.1016/0169-4758(89)90299-8

    Article  CAS  Google Scholar 

  • Pieterse CMJ, van Wees SCM, Hoffland E, van Pelt JA, van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. The Plant Cell 8, 1225–1237. doi: 10.1105/tpc.8.8.1225

    Article  CAS  PubMed  Google Scholar 

  • Racke J (1988) Untersuchungen zur biologischen Bekämpfung von Globodera pallida (Stone) an Kartoffeln durch Pflanzgutbehandlung mit antagonistisch wirkenden Rhizobakterien. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany. [In German]

    Google Scholar 

  • Racke J, Sikora RA (1992) Influence of the plant health-promoting rhizobacteria Agrobacterium radiobacter and Bacillus sphaericus on Globodera pallida root infection of potato and subsequent plant growth. Journal of Phytopathology 134, 198–208.

    Article  Google Scholar 

  • Reimann S (2005) The interrelationships between rhizobacteria and arbuscular mycorrhizal fungi and their importance in the integrated management of nematodes and soilborne plant pathogens. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.

    Google Scholar 

  • Reitz M (1999) Biochemische und molekularbiologische Untersuchungen zur bakterieninduzierten systemischen Resistenz in Kartoffel gegenüber dem Zystennematoden Globodera pallida. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany. [In German]

    Google Scholar 

  • Reitz M, Sikora RA (2001) Bacteria-mediated induced systemic resistance in potato towards the cyst nematode Globodera pallida. In ‘Integrated control of soil pests. IOBC/WPRS Bulletin 24’. (Ed. RA Sikora) pp. 133–138. (IOBC: Paris)

    Google Scholar 

  • Reitz M, Rudolph K, Schröder I, Hoffmann-Hergarten S, Hallmann J, Sikora RA (2000) Lipopolysaccharides of Rhizobium etli strain G12 in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Applied and Environmental Microbiology 66, 3515–3518. doi: 10.1128/AEM.66.8. 3515-3518.2000

    Article  CAS  PubMed  Google Scholar 

  • Reitz M, Oger P, Meyer A, Niehaus K, Farrand SK, Hallmann J, Sikora RA (2002) Importance of the O-antigen, core-region and lipid A of rhizobial lipopolysaccharides for the induction of systemic resistance in potato to Globodera pallida. Nematology 4, 73–79. doi: 10.1163/156854102760082221

    Article  CAS  Google Scholar 

  • Rodriguez-Kabana R, Weaver CF, Garcia R, Robertson DG, Carden EL (1989) Bahiagrass for the management of root-knot and cyst nematodes in soybean. Nematropica 19, 185–193.

    Google Scholar 

  • Saleh H, Sikora RA (1984) The relationship between Glomus fasciculatum root colonization of cotton and its effect on Meloidogyne incognita. Nematologica 30, 230–237.

    Article  Google Scholar 

  • Schäfer K (2007) Dissecting rhizobacteria-induced systemic resistance in tomato against Meloidogyne incognita: the first step using molecular tools. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany.

    Google Scholar 

  • Schäfer K, Fabry S, Sikora RA, Hauschild R (2005) Differently expressed resistance genes in tomato systemically induced by the rhizobacteria Bacillus sphaericus B43 and Rhizobium etli G12. Phytopathology 95(Suppl.), S97.

    Google Scholar 

  • Schäfer K, Silva Fabry C, Sikora RA, Hauschild R (2006) Molecular investigations of rhizobacteria-induced systemic resistance toward the root-knot nematode Meloidogyne incognita in tomato. Multitrophic interactions in soil. IOBC/WPRS Bulletin 29, 135–140.

    Google Scholar 

  • Schönbeck F, Dehne HW, Beicht W (1980) Untersuchungen zur Aktivierung unspezifischer Resistenzmechanismen in Pflanzen: activation of unspecific resistance mechanisms in plants. Journal of Plant Disease and Protection 87, 654–666.

    Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Endophytic bacteria: prospects and opportunities for the biological control of plant-parasitic nematodes. Nematologia Mediterranea 31, 111–120.

    Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. Journal of Phytopathology 152, 48–54. doi: 10.1046/j.1439-0434.2003.00800.x

    Article  Google Scholar 

  • Sikora RA (1978) Studies of the endotrophic mycorrhizal fungus Glomus mosseae on the host-parasite interrelationships of Meloidogyne incognita on tomato. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 85, 197–202. [In German]

    Google Scholar 

  • Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the control of plant parasitic nematodes. Annual Review of Phytopathology 30, 245–270. doi: 10.1146/annurev. py.30.090192.001333

    Article  Google Scholar 

  • Sikora RA (1997) Biological system management in the rhizosphere and inside-out / outside-in perspective. Communications in Agricultural and Applied Biological Sciences 62, 105–112.

    Google Scholar 

  • Sikora RA, Pocasangre L (2004) New technologies to increase root health and crop production. Info Musa 13, 25–29.

    Google Scholar 

  • Sikora RA, Pocasangre L (2006) The concept of a suppressive banana plant: root health management with a biological approach. In ‘Proceedings of the XVII ACROBAT international congress, Joinville - Santa Catarina, Brazil 2006. Vol. I’. (Eds E Soprano, FA Tcacenco, LA Lichtemberg, MC Silva) pp. 241–248. (Association for Cooperation in Research on Banana in the Caribbean and Tropical America: Joinville, Brazil)

    Google Scholar 

  • Sikora RA, Schönbeck F (1975) Effect of vesicular-arbuscular mycorrhizae (Endogone mosseae) on the population dynamics of the rootknot nematodes Meloidogyne incognita and Meloidogyne hapla. In ‘Proceedings VIII international congress on plant protection’. pp. 158–166. (Moscow, Russia)

    Google Scholar 

  • Sikora RA, Schuster R-P (1998) Novel approaches to nematode IPM. In ‘Mobilizing IPM for sustainable banana production in Africa: proceedings of a meeting in Nelspruit, South Africa 1998’. (Eds EA Frison, CS Gold, EB Karamura, RA Sikora) pp. 127–136. (Bioversity: Rome)

    Google Scholar 

  • Sikora RA, Niere B, Kimenju J (2003) Endophytic microbial biodiversity and plant nematode management in African agriculture. In ‘Biological control in IPM systems in Africa’. (Eds P Neuenschwander, C Borgemeister, J Langewald) pp. 179–191. (CAB International: Wallingford, UK)

    Google Scholar 

  • Sikora RA, Bridge J, Starr JL (2005) Management practices: an overview of integrated nematode management technologies. In ‘Plant parasitic nematodes in tropical and subtropical agriculture’. (Eds M Luc, RA Sikora, J Bridge) pp. 793–825. (CAB International: Wallingford, UK)

    Chapter  Google Scholar 

  • Sikora RA, Pocasangre L, zum Felde A, Niere B, Vu TT, Dababat A (2007) Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Journal of Biological Control, in press.

  • Sitaramaiah K, Sikora RA (1982) Effect of the mycorrhizal fungus Glomus fasciculatus on the host-parasite relationship of Rotylenchulus reniformis in tomato. Nematologica 28, 412–419.

    Article  Google Scholar 

  • Sitaramaiah K, Sikora RA (1996) Influence of the mycorrhizal fungus, Glomus fasciculatum, spore concentration on Rotylenchulus reniformis population dynamics and cotton growth. Indian Journal of Nematology 26, 1–6.

    Google Scholar 

  • Smith GS (1987) Interactions of nematodes with mycorrhizal fungi. In ‘Vistas on nematology’. (Eds JA Veech, DW Dickson) pp. 292–300. (Society of Nematologists: Hyattsville, MD)

    Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annual Reviewof Phytopathology 35, 235–270. doi: 10.1146/ annurev.phyto.35.1.235

    Article  CAS  Google Scholar 

  • Stirling GR (1991) ‘Biological control of plant parasitic nematodes.’ (CAB International: Wallingford, UK)

    Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathology 48, 360–369. doi: 10.1046/j.1365-3059.1999.00351.x

    Article  Google Scholar 

  • Terhardt J (1998) Beeinflussung mikrobieller Gemeinschaften der Rhizosphäre nach Blattbehandlung von Pflanzen und biologische Kontrolle von Fusarium oxysporum f.sp. lycopersici und Meloidogyne incognita mit bakteriellen Antagonisten. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany. [In German]

    Google Scholar 

  • Vu TT (2005) Modes of action of non-pathogenic Fusarium oxysporum endophytes for bio-enhancement of banana toward Radopholus similis. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.

    Google Scholar 

  • Vu TT, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8, 847–852. doi: 10.1163/156854106779799259

    Article  Google Scholar 

  • Wei G, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86, 221–224. doi: 10.1094/ Phyto-86-221

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Sikora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikora, R.A., Schäfer, K. & Dababat, A.A. Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australasian Plant Pathology 36, 124–134 (2007). https://doi.org/10.1071/AP07008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP07008

Keywords

Navigation