Skip to main content
Log in

Reduction of diet-induced obesity by a combination of tea-catechin intake and regular swimming

  • Original Article
  • Published:
International Journal of Obesity Submit manuscript

Abstract

Objective:

Obesity is a metabolic disorder resulting from imbalance between metabolizable energy intake and energy expenditure. It is known to be a strong risk factor for lifestyle-related diseases. Here, we investigated the effects of long-term intake of tea catechins (Cat) in combination with regular exercise (Ex) on the development of obesity in C57BL/6 mice.

Design:

We compared body weight, adipose tissue mass, plasma parameters and β-oxidation activity in mice fed a low-fat diet (5% triglyceride (TG); LF), a high-fat diet (30% TG; HF), a HF diet supplemented with 0.5% (w/w) tea Cat, a HF diet in addition to swimming Ex or a HF diet plus 0.5% tea Cat in addition to swimming Ex (Cat+Ex) for 15 weeks. Oxygen consumption and respiratory quotients were measured using indirect calorimetry.

Results:

Tea-Cat intake in combination with swimming Ex suppressed HF diet-induced body-weight gain by 18 and 22%, respectively, compared to Ex and tea-Cat intake on their own. Visceral fat accumulation and the development of hyperinsulinemia and hyperleptinemia were also reduced in the HF+Cat+Ex group. Muscular β-oxidation activity in this group was 69 and 52% higher, respectively, than that in the HF and HF+Cat groups. Lipid oxidation, determined using indirect calorimetry, was higher in the HF+Cat+Ex group, suggesting increased lipid utilization at the individual level.

Conclusion:

These results indicate that intake of tea Cat, together with regular Ex helps to reduce diet-induced obesity. This effect might be attributed, at least in part, to the activation of whole-body energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Larsson B, Bjorntorp P, Tibblin G . The health consequences of moderate obesity. Int J Obes 1981; 5: 97–116.

    CAS  PubMed  Google Scholar 

  2. Hartz AJ, Rupley Jr DC, Kalkhoff RD, Rimm AA . Relationship of obesity to diabetes: influence of obesity level and body fat distribution. Prev Med 1983; 12: 351–357.

    Article  CAS  PubMed  Google Scholar 

  3. Willett WC, Dietz WH, Colditz GA . Guidelines for healthy weight. N Engl J Med 1999; 341: 427–434.

    Article  CAS  PubMed  Google Scholar 

  4. Pellizzon M, Buison A, Ordiz Jr F, Santa Ana L, Jen KL . Effects of dietary fatty acids and exercise on body-weight regulation and metabolism in rats. Obes Res 2002; 10: 947–955.

    Article  CAS  PubMed  Google Scholar 

  5. Mori TA, Bao DQ, Burke V, Puddey IB, Watts GF, Beilin LJ . Dietary fish as a major component of a weight-loss diet: effect on serum lipids, glucose, and insulin metabolism in overweight hypertensive subjects. Am J Clin Nutr 1999; 70: 817–825.

    Article  CAS  PubMed  Google Scholar 

  6. Murase T, Aoki M, Wakisaka T, Hase T, Tokimitsu I . Anti-obesity effect of dietary diacylglycerol in C57BL/6J mice: dietary diacylglycerol stimulates intestinal lipid metabolism. J Lipid Res 2002; 43: 1312–1319.

    CAS  PubMed  Google Scholar 

  7. Bach AC, Ingenbleek Y, Frey A . The usefulness of dietary medium-chain triglycerides in body weight control: fact or fancy? J Lipid Res 1996; 37: 708–726.

    CAS  PubMed  Google Scholar 

  8. Jakicic JM . Exercise in the treatment of obesity. Endocrinol Metab Clin North Am 2003; 32: 967–980.

    Article  PubMed  Google Scholar 

  9. Stewart KJ . Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: plausible mechanisms for improving cardiovascular health. JAMA 2002; 288: 1622–1631.

    Article  PubMed  Google Scholar 

  10. Henriksen EJ . Effects of acute exercise and exercise training on insulin resistance. J Appl Physiol 2002; 93: 788–796.

    Article  CAS  PubMed  Google Scholar 

  11. Musi N, Fujii N, Hirshman MF, Ekberg I, Froberg S, Ljungqvist O et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes 2001; 50: 921–927.

    Article  CAS  PubMed  Google Scholar 

  12. Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M et al. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 2002; 283: E66–E72.

    Article  CAS  PubMed  Google Scholar 

  13. Shiota S, Shimizu M, Mizushima T, Ito H, Hatano T, Yoshida T et al. Marked reduction in the minimum inhibitory concentration (MIC) of β-lactams in methicillin-resistant Staphylococcus aureus produced by epicatechin gallate, an ingredient of green tea (Camellia sinensis). Biol Pharm Bull 1999; 22: 1388–1390.

    Article  CAS  PubMed  Google Scholar 

  14. Yang CS, Wang ZY . Tea and cancer. J Natl Cancer Inst 1993; 85: 1038–1049.

    Article  CAS  PubMed  Google Scholar 

  15. Matsumoto N, Ishigaki F, Ishigaki A, Iwashima H, Hara Y . Reduction of blood glucose levels by tea catechin. Biosci Biotech Biochem 1993; 57: 525–527.

    Article  CAS  Google Scholar 

  16. Chyu KY, Babbidge SM, Zhao X, Dandillaya R, Rietveld AG, Yano J et al. Differential effects of green tea-derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice. Circulation 2004; 109: 2448–2453.

    Article  CAS  PubMed  Google Scholar 

  17. Miura Y, Chiba T, Tomita I, Koizumi H, Miura S, Umegaki K et al. Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice. J Nutr 2001; 131: 27–32.

    Article  CAS  PubMed  Google Scholar 

  18. Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I . Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes Relat Metab Disord 2002; 26: 1459–1464.

    Article  CAS  PubMed  Google Scholar 

  19. Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y et al. Ingestion of a tea beverage rich in catechins leads to a reduction in body fat and malondialdehyde-LDL in men. Am J Clin Nutr 2005; 81: 122–129.

    Article  CAS  PubMed  Google Scholar 

  20. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN . Diet-induced type II diabetes in C57BL/6J mice. Diabetes 1988; 37: 1163–1167.

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto K, Ishihara K, Tanaka K, Inoue K, Fushiki T . An adjustable-current swimming pool for the evaluation of endurance capacity of mice. J Appl Physiol 1996; 81: 1843–1849.

    Article  CAS  PubMed  Google Scholar 

  22. Mizunoya W, Oyaizu S, Ishihara K, Fushiki T . Protocol for measuring the endurance capacity of mice in an adjustable-current swimming pool. Biosci Biotechnol Biochem 2000; 66: 1133–1136.

    Article  Google Scholar 

  23. Murase T, Haramizu S, Shimotoyodome A, Nagasawa A, Tokimitsu I . Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. Am J Physiol Regul Integr Comp Physiol 2005; 288: R708–R715.

    Article  CAS  PubMed  Google Scholar 

  24. Frayn KN . Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 1983; 55: 628–634.

    Article  CAS  PubMed  Google Scholar 

  25. Ishihara K, Oyaizu S, Onuki K, Lim K, Fushiki T . Chronic (−)-hydroxycitrate administration spares carbohydrate utilization and promotes lipid oxidation during exercise in mice. J Nutr. 2000; 130: 2990–2995.

    Article  CAS  PubMed  Google Scholar 

  26. McArdle WD, Katch FI, Katch VL . Exercise Physiology: Energy, Nutrition, and Human Performance 5th edn. Lippincott Williams & Wilkins: Baltimore, 2001.

    Google Scholar 

  27. Singh H, Beckman K, Poulos A . Peroxisomal β-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria. J Biol Chem 1994; 269: 9514–9520.

    CAS  PubMed  Google Scholar 

  28. Horowitz JF, Klein S . Lipid metabolism during endurance exercise. Am J Clin Nutr 2000; 72: 558S–563S.

    Article  CAS  PubMed  Google Scholar 

  29. Jeukendrup AE, Saris WH, Wagenmakers AJ . Fat metabolism during exercise: a review. Part II: regulation of metabolism and the effects of training. Int J Sports Med 1998; 19: 293–302.

    Article  CAS  PubMed  Google Scholar 

  30. Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS . Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1995; 1: 1311–1314.

    Article  CAS  PubMed  Google Scholar 

  31. Harte RA, Kirk EA, Rosenfeld ME, LeBoeuf RC . Initiation of hyperinsulinemia and hyperleptinemia is diet dependent in C57BL/6 mice. Horm Metab Res 1999; 31: 570–575.

    Article  CAS  PubMed  Google Scholar 

  32. Kao YH, Hiipakka RA, Liao S . Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000; 141: 980–987.

    Article  CAS  PubMed  Google Scholar 

  33. Klaus S, Pultz S, Thone-Reineke C, Wolfram S . Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes Relat Metab Disord 2005; 29: 615–623.

    Article  CAS  Google Scholar 

  34. Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B . UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 2001; 1504: 82–106.

    Article  CAS  PubMed  Google Scholar 

  35. Holm C . Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans 2003; 31: 1120–1124.

    Article  CAS  PubMed  Google Scholar 

  36. Urhausen A, Gabriel H, Kindermann W . Blood hormones as markers of training stress and overtraining. Sports Med 1995; 20: 251–276.

    Article  CAS  PubMed  Google Scholar 

  37. Weiser M, Frishman WH, Michaelson MD, Abdeen MA . The pharmacologic approach to the treatment of obesity. J Clin Pharmacol 1997; 37: 453–473.

    Article  CAS  PubMed  Google Scholar 

  38. Borchardt RT, Huber JA . Catechol-O-methyltransferase. 5. Structure-activity relationships for inhibition by flavonoids. J Med Chem 1975; 18: 120–122.

    Article  CAS  PubMed  Google Scholar 

  39. Park H, Kaushik VK, Constant S, Prentki M, Przybytkowski E, Ruderman NB et al. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem 2002; 277: 32571–32577.

    Article  CAS  PubMed  Google Scholar 

  40. Schoonjans K, Staels B, Auwerx J . Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 1996; 37: 907–925.

    CAS  PubMed  Google Scholar 

  41. Chantre P, Lairon D . Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomedicine 2002; 9: 3–8.

    Article  CAS  PubMed  Google Scholar 

  42. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 1999; 70: 1040–1045.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Murase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murase, T., Haramizu, S., Shimotoyodome, A. et al. Reduction of diet-induced obesity by a combination of tea-catechin intake and regular swimming. Int J Obes 30, 561–568 (2006). https://doi.org/10.1038/sj.ijo.0803135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803135

  • Springer Nature Limited

Keywords

This article is cited by

Navigation