Skip to main content

Advertisement

Log in

Nanobead-based interventions for the treatment and prevention of tuberculosis

  • Perspectives
  • Published:

From Nature Reviews Microbiology

View current issue Sign up to alerts

Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the most devastating bacterial diseases to affect humans. M. tuberculosis is a robust pathogen that has evolved the capacity to survive and grow inside macrophage phagosomes. A cocktail of antibiotics has long been successfully used against M. tuberculosis but is becoming less effective owing to the emergence of multidrug resistance. The only available preventive vaccine, using Mycobacterium bovis bacille Calmette–Guérin, is considered to be ineffective against adult pulmonary TB, the most prevalent form of the disease. Here, we review the potential use of biodegradable nanoparticle-based anti-TB drug delivery systems that have been shown to be more effective against M. tuberculosis in animal models than conventional antibiotic treatment regimens. This technology also has substantial potential for vaccination and other therapeutic strategies against TB and other infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Mycobacterium tuberculosis infection and granuloma formation.
Figure 2: Nanobead properties.
Figure 3: The principle of slow drug release with nanoparticles.

Similar content being viewed by others

References

  1. Young, D., Perkins, M., Duncan, K. & Barry, C. E. 3rd. Confronting the scientific obstacles to global control of tuberculosis. J. Clin. Invest. 118, 1255–1265 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dye, C. & Williams, B. G. The population dynamics and control of tuberculosis. Science 328, 856–861 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Russell, D. G., Barry, C. E. 3rd & Flynn, J. L. Tuberculosis: what we don't know can, and does, hurt us. Science 328, 852–856 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chan, E. D. & Iseman, M. D. Multidrug-resistant and extensively drug-resistant tuberculosis: a review. Curr. Opin. Infect. Dis. 21, 587–595 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y. & Yew, W. W. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 13, 1320–1330 (2009).

    CAS  PubMed  Google Scholar 

  6. Dye, C. Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nature Rev. Microbiol. 7, 81–87 (2009).

    Article  CAS  Google Scholar 

  7. Bhatt, K. & Salgame, P. Host innate immune response to Mycobacterium tuberculosis. J. Clin. Immunol. 27, 347–362 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Vergne, I., Chua, J., Singh, S. B. & Deretic, V. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell Dev. Biol. 20, 367–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Cooper, A. M. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 27, 393–422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Couvreur, P. & Vauthier, C. Nanotechnology: intelligent design to treat complex disease. Pharm. Res. 23, 1417–1450 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, L. et al. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Rev. Drug Discov. 7, 771–782 (2008).

    Article  CAS  Google Scholar 

  13. Sosnik, A., Carcaboso, A. M., Glisoni, R. J., Moretton, M. A. & Chiappetta, D. A. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev. 62, 547–559 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Khuller, G. K., Kapur, M. & Sharma, S. Liposome technology for drug delivery against mycobacterial infections. Curr. Pharm. Des 10, 3263–3274 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Pandey, R. & Khuller, G. K. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis 85, 227–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Desjardins, M. & Griffiths, G. Phagocytosis: latex leads the way. Curr. Opin. Cell Biol. 15, 498–503 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Areschoug, T. & Gordon, S. Scavenger receptors: role in innate immunity and microbial pathogenesis. Cell. Microbiol. 11, 1160–1169 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida, A. et al. Selective delivery of rifampicin incorporated into poly(DL-lactic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis Calmette–Guérin. Microbes Infect. 8, 2481–2491 (2006).

    Article  Google Scholar 

  19. Hirota, K. et al. Delivery of rifampicin–PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J. Control. Release 142, 339–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Kisich, K. O. et al. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int. J. Pharm. 345, 154–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Onoshita, T. et al. The behavior of PLGA microspheres containing rifampicin in alveolar macrophages. Colloids Surf. B Biointerfaces 76, 151–157 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Pandey, R. & Khuller, G. K. Polymer based drug delivery systems for mycobacterial infections. Curr. Drug Deliv. 1, 195–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Shive, M. S. & Anderson, J. M. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28, 5–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Anisimova, Y. V., Gelperina, S. I., Peloquin, C. A. & Heifets, L. B. Nanoparticles as antituberculosis drugs carriers: effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages. J. Nanopart. Res. 2, 165–171 (2000).

    Article  CAS  Google Scholar 

  25. Muttil, P. et al. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur. J. Pharm. Sci. 32, 140–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Singh, R. & Lillard, J. W. Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharma, A., Sharma, S. & Khuller, G. K. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J. Antimicrob. Chemother. 54, 761–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Pandey, R. et al. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother. 52, 981–986 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Garcia-Contreras, L. et al. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob. Agents Chemother. 51, 2830–2836 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahmad, Z., Sharma, S. & Khuller, G. K. The potential of azole antifungals against latent/persistent tuberculosis. FEMS Microbiol. Lett. 258, 200–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Pandey, R. & Khuller, G. K. Nanoparticle-based oral drug delivery system for an injectable antibiotic – streptomycin. Evaluation in a murine tuberculosis model. Chemotherapy 53, 437–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Hussain, N., Jaitley, V. & Florence, A. T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev. 50, 107–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Ahmad, Z. & Khuller, G. K. Alginate-based sustained release drug delivery systems for tuberculosis. Expert Opin. Drug Deliv. 5, 1323–1334 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Jain, R. A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21, 2475–2490 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Gaumet, M., Gurny, R. & Delie, F. Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size. Eur. J. Pharm. Sci. 36, 465–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Skeiky, Y. A. & Sadoff, J. C. Advances in tuberculosis vaccine strategies. Nature Rev. Microbiol. 4, 469–476 (2006).

    Article  CAS  Google Scholar 

  37. Andersen, P. Vaccine strategies against latent tuberculosis infection. Trends Microbiol. 15, 7–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Fifis, T. et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Xiang, S. D. et al. Pathogen recognition and development of particulate vaccines: does size matter? Methods 40, 1–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Hu, Y. et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett. 7, 3056–3064 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Mater. 7, 588–595 (2008).

    Article  CAS  Google Scholar 

  42. Dhiman, N. & Khuller, G. K. Protective efficacy of mycobacterial 71-kDa cell wall associated protein using poly (DL-lactide-co-glycolide) microparticles as carrier vehicles. FEMS Immunol. Med. Microbiol. 21, 19–28 (1998).

    CAS  PubMed  Google Scholar 

  43. Venkataprasad, N. et al. Induction of cellular immunity to a mycobacterial antigen adsorbed on lamellar particles of lactide polymers. Vaccine 17, 1814–1819 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Carpenter, Z. K., Williamson, E. D. & Eyles, J. E. Mucosal delivery of microparticle encapsulated ESAT-6 induces robust cell-mediated responses in the lung milieu. J. Control. Release 104, 67–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kirby, D. J. et al. PLGA microspheres for the delivery of a novel subunit TB vaccine. J. Drug Target 16, 282–293 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Shi, S. & Hickey, A. J. PLGA microparticles in respirable sizes enhance an in vitro T cell response to recombinant Mycobacterium tuberculosis antigen TB10.4-Ag85B. Pharm. Res. 27, 350–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Lu, D. et al. Pulmonary immunization using antigen 85-B polymeric microparticles to boost tuberculosis immunity. AAPS J. 12, 338–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Muttil, P., Wang, C. & Hickey, A. J. Inhaled drug delivery for tuberculosis therapy. Pharm. Res. 26, 2401–2416 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Mollenkopf, H. J. et al. Enhanced protective efficacy of a tuberculosis DNA vaccine by adsorption onto cationic PLG microparticles. Vaccine 22, 2690–2695 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Johansen, P. et al. Anti-mycobacterial immunity induced by a single injection of M. leprae Hsp65-encoding plasmid DNA in biodegradable microparticles. Immunol. Lett. 90, 81–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Bivas-Benita, M. et al. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 22, 1609–1615 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Bivas-Benita, M. et al. Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA–PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 27, 4010–4017 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Akin, D. et al. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotech. 2, 441–449 (2007).

    Article  CAS  Google Scholar 

  54. Cosma, C. L., Humbert, O., Sherman, D. R. & Ramakrishnan, L. Trafficking of superinfecting Mycobacterium organisms into established granulomas occurs in mammals and is independent of the Erp and ESX-1 mycobacterial virulence loci. J. Infect. Dis. 198, 1851–1855 (2008).

    Article  PubMed  Google Scholar 

  55. Garcia-Contreras, L. et al. Immunization by a bacterial aerosol. Proc. Natl Acad. Sci. USA 105, 4656–4660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ajdary, S. et al. Oral administration of BCG encapsulated in alginate microspheres induces strong TH1 response in BALB/c mice. Vaccine 25, 4595–4601 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Wong, Y. L. et al. Drying a tuberculosis vaccine without freezing. Proc. Natl Acad. Sci. USA 104, 2591–2595 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sung, J. C., Pulliam, B. L. & Edwards, D. A. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 25, 563–570 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Singh, R. & Kostarelos, K. Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol. 27, 220–229 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Reddy, S. T., Swartz, M. A. & Hubbell, J. A. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 27, 573–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, P. T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 1770–1773 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, P. T., Stenger, S., Tang, D. H. & Modlin, R. L. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J. Immunol. 179, 2060–2063 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Sharma, S., Verma, I. & Khuller, G. K. Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: in vitro and ex vivo study. Eur. Respir. J. 16, 112–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Toro, J. C. et al. Enhanced susceptibility of multidrug resistant strains of Mycobacterium tuberculosis to granulysin peptides correlates with a reduced fitness phenotype. Microbes Infect. 8, 1985–1993 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Bottger, E. C., Springer, B., Pletschette, M. & Sander, P. Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nature Med. 4, 1343–1344 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Amaral, L., Martins, M. & Viveiros, M. Phenothiazines as anti-multi-drug resistant tubercular agents. Infect. Disord. Drug Targets 7, 257–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Kuijl, C. et al. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450, 725–730 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, C. C., MacKay, J. A., Frechet, J. M. & Szoka, F. C. Designing dendrimers for biological applications. Nature Biotechnol. 23, 1517–1526 (2005).

    Article  CAS  Google Scholar 

  69. Kumar, P. V., Agashe, H., Dutta, T. & Jain, N. K. PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr. Drug Deliv. 4, 11–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Wolf, A. J. et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med. 205, 105–115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Maleki, M. Gutierrez, A. Haas, B. Plikaytis and J. Posey for critically evaluating this Review, and J. Husley and the creative services of the CDC for help with figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth Griffiths.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Some characteristic properties of polymers that can be used to produce biocompatible micro- and nanobeads. (PDF 883 kb)

Supplementary information S2 (table)

Salient features of antitubercular drug delivery systems (PDF 263 kb)

Related links

Related links

FURTHER INFORMATION

Global Alliance for TB Drug Development

Stop TB Partnership tuberculosis vaccine candidates – 2009

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, G., Nyström, B., Sable, S. et al. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat Rev Microbiol 8, 827–834 (2010). https://doi.org/10.1038/nrmicro2437

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2437

  • Springer Nature Limited

This article is cited by

Navigation