Skip to main content

Advertisement

Log in

PLGA Microparticles in Respirable Sizes Enhance an In Vitro T Cell Response to Recombinant Mycobacterium Tuberculosis Antigen TB10.4-Ag85B

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study the use of poly (lactide-co-glycolide) (PLGA) microparticles in respirable sizes as carriers for recombinant tuberculosis (TB) antigen, TB10.4-Ag85B, with the ultimate goal of pulmonary delivery as vaccine for the prevention of TB.

Materials and Methods

Recombinant TB antigens were purified from E. coli by FPLC and encapsulated into PLGA microparticles by emulsion/spray-drying. Spray-drying condition was optimized by half-factorial design. Microparticles encapsulating TB antigens were assessed for their ability to deliver antigens to macrophages for subsequent presentation by employing an in vitro antigen presentation assay specific to an Ag85B epitope.

Results

Spray-drying condition was optimized to prepare PLGA microparticles suitable for pulmonary delivery (aerodynamic diameter of 3.3 µm). Antigen release from particles exhibited an initial burst release followed by sustained release up to 10 days. Antigens encapsulated into PLGA microparticles induced much stronger interleukin-2 secretion in a T-lymphocyte assay compared to antigen solutions for three particle formulations. Macrophages pulsed with PLGA-MDP-TB10.4-Ag85B demonstrated extended epitope presentation.

Conclusion

PLGA microparticles in respirable sizes were effective in delivering recombinant TB10.4-Ag85B in an immunologically relevant manner to macrophages. These results set the foundation for further investigation into the potential use of PLGA particles for pulmonary delivery of vaccines to prevent Mycobacterium tuberculosis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dunlap NE, Briles DE. Immunology of tuberculosis. Med Clin North Am. 1993;77:1235–51.

    CAS  PubMed  Google Scholar 

  2. Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001;19:93–129.

    Article  CAS  PubMed  Google Scholar 

  3. Brimnes N. BCG vaccination and WHO’s global strategy for tuberculosis control 1948–1983. Soc Sci Med. 2008;67:863–73.

    Article  PubMed  Google Scholar 

  4. Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. Jama. 1994;271:698–702.

    Article  CAS  PubMed  Google Scholar 

  5. Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995;346:1339–45.

    Article  CAS  PubMed  Google Scholar 

  6. Sterne JA, Rodrigues LC, Guedes IN. Does the efficacy of BCG decline with time since vaccination? Int J Tuberc Lung Dis. 1998;2:200–7.

    CAS  PubMed  Google Scholar 

  7. Rodrigues LC, Pereira SM, Cunha SS, Genser B, Ichihara MY, de Brito SC, et al. Effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: the BCG-REVAC cluster-randomised trial. Lancet. 2005;366:1290–5.

    Article  PubMed  Google Scholar 

  8. Mittal SK, Aggarwal V, Rastogi A, Saini N. Does B.C.G. vaccination prevent or postpone the occurrence of tuberculous meningitis? Indian J Pediatr. 1996;63:659–64.

    Article  CAS  PubMed  Google Scholar 

  9. Colditz GA, Berkey CS, Mosteller F, Brewer TF, Wilson ME, Burdick E, et al. The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics. 1995;96:29–35.

    CAS  PubMed  Google Scholar 

  10. Skeiky YA, Sadoff JC. Advances in tuberculosis vaccine strategies. Nat Rev Microbiol. 2006;4:469–76.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Contreras L, Wong YL, Muttil P, Padilla D, Sadoff J, Derousse J, et al. Immunization by a bacterial aerosol. Proc Natl Acad Sci USA. 2008;105:4656–60.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta GA, Hickey AJ. Contemporary approaches in aerosolized drug delivery to the lung. J Control Release. 1991;17:127–47.

    Article  CAS  Google Scholar 

  13. Lu JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9:325–41.

    Article  CAS  PubMed  Google Scholar 

  14. Okada H. One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Adv Drug Deliv Rev. 1997;28:43–70.

    Article  CAS  PubMed  Google Scholar 

  15. Okada H, Toguchi H. Biodegradable microspheres in drug delivery. Crit Rev Ther Drug Carrier Syst. 1995;12:1–99.

    CAS  PubMed  Google Scholar 

  16. Hamishehkar H, Emami J, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, et al. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method. Colloids Surf B Biointerfaces. 2009;74:340–9.

    Article  CAS  PubMed  Google Scholar 

  17. Han Y, Tian H, He P, Chen X, Jing X. Insulin nanoparticle preparation and encapsulation into poly(lactic-co-glycolic acid) microspheres by using an anhydrous system. Int J Pharm. 2009;378:159–66.

    Article  CAS  PubMed  Google Scholar 

  18. Kim BS, Oh JM, Hyun H, Kim KS, Lee SH, Kim YH, et al. Insulin-Loaded Microcapsules for in vivo delivery. Mol Pharm. 2009.

  19. Lu D, Garcia-Contreras L, Xu D, Kurtz SL, Liu J, Braunstein M, et al. Poly (lactide-co-glycolide) microspheres in respirable sizes enhance an in vitro T cell response to recombinant Mycobacterium tuberculosis antigen 85B. Pharm Res. 2007;24:1834–43.

    Article  CAS  PubMed  Google Scholar 

  20. Emami J, Hamishehkar H, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, et al. A novel approach to prepare insulin-loaded poly(lactic-co-glycolic acid) microcapsules and the protein stability study. J Pharm Sci. 2009;98:1712–31.

    Article  CAS  PubMed  Google Scholar 

  21. Kirby DJ, Rosenkrands I, Agger EM, Andersen P, Coombes AG, Perrie Y. PLGA microspheres for the delivery of a novel subunit TB vaccine. J Drug Target. 2008;16:282–93.

    Article  CAS  PubMed  Google Scholar 

  22. Cal K, Sollohub K. Spray drying technique. I: hardware and process parameters. J Pharm Sci. 2009.

  23. Shi S, Yu L, Sun D, Liu J, Hickey AJ. Rational design of multiple TB antigens TB10.4 and TB10.4-Ag85B as subunit vaccine candidates against mycobacterium tuberculosis. Pharm Res, doi:10.1007/s11095-009-9995-y, 2009.

  24. Skjot RL, Oettinger T, Rosenkrands I, Ravn P, Brock I, Jacobsen S, et al. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens. Infect Immun. 2000;68:214–20.

    Article  CAS  PubMed  Google Scholar 

  25. Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G, Frenkiel TA, et al. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. Embo J. 2005;24:2491–8.

    Article  CAS  PubMed  Google Scholar 

  26. Skjot RL, Brock I, Arend SM, Munk ME, Theisen M, Ottenhoff TH, et al. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect Immun. 2002;70:5446–53.

    Article  CAS  PubMed  Google Scholar 

  27. Daffe M. The mycobacterial antigens 85 complex — from structure to function and beyond. Trends Microbiol. 2000;8:438–40.

    Article  CAS  PubMed  Google Scholar 

  28. Wiker HG, Harboe M. The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev. 1992;56:648–61.

    CAS  PubMed  Google Scholar 

  29. Havlir DV, Wallis RS, Boom WH, Daniel TM, Chervenak K, Ellner JJ. Human immune response to Mycobacterium tuberculosis antigens. Infect Immun. 1991;59:665–70.

    CAS  PubMed  Google Scholar 

  30. Strawbridge AB, Blum JS. Autophagy in MHC class II antigen processing. Curr Opin Immunol. 2007;19:87–92.

    Article  CAS  PubMed  Google Scholar 

  31. Canaday DH, Gehring A, Leonard EG, Eilertson B, Schreiber JR, Harding CV, et al. T-cell hybridomas from HLA-transgenic mice as tools for analysis of human antigen processing. J Immunol Methods. 2003;281:129–42.

    Article  CAS  PubMed  Google Scholar 

  32. Telko MJ, Hickey AJ. Critical assessment of inverse gas chromatography as means of assessing surface free energy and acid-base interaction of pharmaceutical powders. J Pharm Sci. 2007;96:2647–54.

    Article  CAS  PubMed  Google Scholar 

  33. Hirota K, Hasegawa T, Hinata H, Ito F, Inagawa H, Kochi C, et al. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J Control Release. 2007;119:69–76.

    Article  CAS  PubMed  Google Scholar 

  34. O’Hara P, Hickey AJ. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res. 2000;17:955–61.

    Article  PubMed  Google Scholar 

  35. Shi S, Ashley ES, Alexander BD, Hickey AJ. Initial characterization of micafungin pulmonary delivery via two different nebulizers and multivariate data analysis of aerosol mass distribution profiles. AAPS PharmSciTech. 2009;10:129–37.

    Article  PubMed  Google Scholar 

  36. Shi S, Hickey AJ. Multivariate data analysis as a semi-quantitative tool for interpretive evaluation of comparability or equivalence of aerodynamic particle size distribution profiles. AAPS PharmSciTech, 2009.

  37. Dos Santos DF, Nicolete R, de Souza PR, Bitencourt CD, Dos Santos Junior RR, Bonato VL, et al. Characterization and in vitro activities of cell-free antigens from Histoplasma capsulatum-loaded biodegradable microspheres. Eur J Pharm Sci 2009.

  38. Wang C, Muttil P, Lu D, Beltran-Torres AA, Garcia-Contreras L, Hickey AJ. Screening for potential adjuvants administered by the pulmonary route for tuberculosis vaccines. Aaps J. 2009;11:139–47.

    Article  CAS  PubMed  Google Scholar 

  39. Nastasovic AB, Onjia AE. Determination of glass temperature of polymers by inverse gas chromatography. J Chromatogr A. 2008;1195:1–15.

    Article  CAS  PubMed  Google Scholar 

  40. Allison SD. Analysis of initial burst in PLGA microparticles. Expert Opin Drug Deliv. 2008;5:615–28.

    Article  CAS  PubMed  Google Scholar 

  41. Surana R, Randall L, Pyne A, Vemuri NM, Suryanarayanan R. Determination of glass transition temperature and in situ study of the plasticizing effect of water by inverse gas chromatography. Pharm Res. 2003;20:1647–54.

    Article  CAS  PubMed  Google Scholar 

  42. Jones BG, Dickinson PA, Gumbleton M, Kellaway IW. Lung surfactant phospholipids inhibit the uptake of respirable microspheres by the alveolar macrophage NR8383. J Pharm Pharmacol. 2002;54:1065–72.

    Article  CAS  PubMed  Google Scholar 

  43. Evora C, Soriano I, Rogers RA, Shakesheff KN, Hanes J, Langer R. Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1, 2-dipalmitoylphosphatidylcholine. J Control Release. 1998;51:143–52.

    Article  CAS  PubMed  Google Scholar 

  44. Jones BG, Dickinson PA, Gumbleton M, Kellaway IW. The inhibition of phagocytosis of respirable microspheres by alveolar and peritoneal macrophages. Int J Pharm. 2002;236:65–79.

    Article  CAS  PubMed  Google Scholar 

  45. Sugiyama K, Mitsuno S, Shiraishi K. Adsorption of protein on the surface of thermosensitive poly(methyl methacrylate) microspheres modified with the N-(2-hydroxypropyl)methacrylamide and 2-(methacryloyloxy)ethyl phosphorylcholine moieties. J Polymer Sci Part A Polymer Chem. 1996;35:3349–57.

    Article  Google Scholar 

  46. Kerr MC, Teasdale RD. Defining macropinocytosis. Traffic. 2009;10:364–71.

    Article  CAS  PubMed  Google Scholar 

  47. Sant AJ, Chaves FA, Jenks SA, Richards KA, Menges P, Weaver JM, et al. The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes. Immunol Rev. 2005;207:261–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors greatly appreciate the technical assistance offered by Amar Kumbhar for SEM imaging. The authors are also thankful to Dr. Jian Liu for offering the FPLC to purify recombinant TB antigens. DB-1 hybridoma cells were kindly supplied by Dr. Henry Boom of Case Western Reserve University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hickey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, S., Hickey, A.J. PLGA Microparticles in Respirable Sizes Enhance an In Vitro T Cell Response to Recombinant Mycobacterium Tuberculosis Antigen TB10.4-Ag85B. Pharm Res 27, 350–360 (2010). https://doi.org/10.1007/s11095-009-0028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0028-7

KEY WORDS

Navigation