Skip to main content
Log in

Carbon extension in peptidylnucleoside biosynthesis by radical SAM enzymes

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Nikkomycins and polyoxins are antifungal peptidylnucleoside antibiotics active against human and plant pathogens. Here we report that during peptidylnucleoside biosynthesis in Streptomyces cacaoi and S. tendae, the C5′ extension of the nucleoside essential for downstream structural diversification is catalyzed by a conserved radical S-adenosyl-L-methionine (SAM) enzyme, PolH or NikJ. This is distinct from the nucleophilic mechanism reported for antibacterial nucleosides and represents a new mechanism of nucleoside natural product biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: C5′ extension in antifungal peptidylnucleoside biosynthesis.
Figure 2: Characterization of PolH C209 variants.

Similar content being viewed by others

References

  1. Isono, K. J. Antibiot. (Tokyo) 41, 1711–1739 (1988).

    Article  CAS  Google Scholar 

  2. Munro, C.A. Adv. Appl. Microbiol. 83, 145–172 (2013).

    Article  CAS  Google Scholar 

  3. Reuveni, M., Cohen, H., Zahavi, T. & Venezian, A. Crop Prot. 19, 393–399 (2000).

    Article  CAS  Google Scholar 

  4. Shubitz, L.F. et al. J. Infect. Dis. 209, 1949–1954 (2014).

    Article  CAS  Google Scholar 

  5. Isono, K., Sato, T., Hirasawa, K., Funayama, S. & Suzuki, S. J. Am. Chem. Soc. 100, 3937–3939 (1978).

    Article  CAS  Google Scholar 

  6. Schüz, T.C., Fiedler, H.P., Zähner, H., Rieck, M. & Konig, W.A. J. Antibiot. (Tokyo) 45, 199–206 (1992).

    Article  Google Scholar 

  7. Isono, K., Crain, P.F. & Mccloskey, J.A. J. Am. Chem. Soc. 97, 943–945 (1975).

    Article  CAS  Google Scholar 

  8. Chen, W. et al. J. Biol. Chem. 284, 10627–10638 (2009).

    Article  CAS  Google Scholar 

  9. Ginj, C., Rüegger, H., Amrhein, N. & Macheroux, P. ChemBioChem 6, 1974–1976 (2005).

    Article  Google Scholar 

  10. Chen, W. et al. J. Ind. Microbiol. Biotechnol. 43, 401–417 (2016).

    Article  CAS  Google Scholar 

  11. Sofia, H.J., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F. & Miller, N.E. Nucleic Acids Res. 29, 1097–1106 (2001).

    Article  CAS  Google Scholar 

  12. Frey, P.A. Acc. Chem. Res. 47, 540–549 (2014).

    Article  CAS  Google Scholar 

  13. Oberdorfer, G., Binter, A., Ginj, C., Macheroux, P. & Gruber, K. J. Biol. Chem. 287, 31427–31436 (2012).

    Article  CAS  Google Scholar 

  14. Zhang, Y. et al. Nature 465, 891–896 (2010).

    Article  CAS  Google Scholar 

  15. Hover, B.M., Loksztejn, A., Ribeiro, A.A. & Yokoyama, K. J. Am. Chem. Soc. 135, 7019–7032 (2013).

    Article  CAS  Google Scholar 

  16. Mahanta, N., Fedoseyenko, D., Dairi, T. & Begley, T.P. J. Am. Chem. Soc. 135, 15318–15321 (2013).

    Article  CAS  Google Scholar 

  17. Broderick, J.B., Duffus, B.R., Duschene, K.S. & Shepard, E.M. Chem. Rev. 114, 4229–4317 (2014).

    Article  CAS  Google Scholar 

  18. Kudo, F., Hoshi, S., Kawashima, T., Kamachi, T. & Eguchi, T. J. Am. Chem. Soc. 136, 13909–13915 (2014).

    Article  CAS  Google Scholar 

  19. Wyszynski, F.J. et al. Nat. Chem. 4, 539–546 (2012).

    Article  CAS  Google Scholar 

  20. Yang, Z. et al. J. Biol. Chem. 286, 7885–7892 (2011).

    Article  CAS  Google Scholar 

  21. Barnard-Britson, S. et al. J. Am. Chem. Soc. 134, 18514–18517 (2012).

    Article  CAS  Google Scholar 

  22. Hänzelmann, P. & Schindelin, H. Proc. Natl. Acad. Sci. USA 101, 12870–12875 (2004).

    Article  Google Scholar 

  23. Edelhoch, H. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  Google Scholar 

  24. Fish, W.W. Methods Enzymol. 158, 357–364 (1988).

    Article  CAS  Google Scholar 

  25. Beinert, H. Anal. Biochem. 131, 373–378 (1983).

    Article  CAS  Google Scholar 

  26. Palmer, G. Methods Enzymol. 10, 594–609 (1967).

    Article  Google Scholar 

  27. Stoll, S. & Schweiger, A. J. Magn. Reson. 178, 42–55 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G.R. Dubay for assistance with the MS measurements. We thank A.A. Ribeiro at the Duke NMR center for the assistance in collecting NMR data. This work was supported by the Duke University Medical Center and National Institute of General Medical Sciences R01 GM115729 (to K.Y.). EPR spectrometer was supported by an Institutional Development Grant (ID 2014-IDG-1017) from the North Carolina Biotechnology Center.

Author information

Authors and Affiliations

Authors

Contributions

K.Y. conceived the project. K.Y. and E.A.L. designed the experiments. E.A.L. performed the experiments. K.Y. and E.A.L. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Kenichi Yokoyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–11 and Supplementary Figures 1–31. (PDF 6129 kb)

Supplementary Note

Synthetic Procedures (PDF 311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lilla, E., Yokoyama, K. Carbon extension in peptidylnucleoside biosynthesis by radical SAM enzymes. Nat Chem Biol 12, 905–907 (2016). https://doi.org/10.1038/nchembio.2187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2187

  • Springer Nature America, Inc.

This article is cited by

Navigation