Skip to main content

Advertisement

Log in

The Production of Cephalosporin C by Acremonium chrysogenum is Improved by the Intracellular Expression of a Bacterial Hemoglobin

  • Research
  • Published:
Bio/Technology Submit manuscript

Abstract

A DNA vector for expressing an oxygen-binding heme protein (Vitreoscilla hemoglobin, or VHb) in filamentous fungi was constructed and introduced into a cephalosporin C-producing strain of Acremonium chrysogenum. Expression of VHb in transformants was demonstrated by Western immunoblot analysis and by increased carbon monoxide binding activity of cell extracts. Several VHb-expressing transformants produced significantly higher yields of cephalosporin C than control strains in batch culture experiments. Using the same vector system, VHb was also expressed in the related fungus Penicillium chrysogenum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skatrud, P.L., Teitz, A.J., Ingolia, T.D., Cantwell, C.A., Fisher, D.L., Chapman, J.L. and Queener, S.W. 1989. Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Bio/Technology 7: 477–485.

    CAS  Google Scholar 

  2. Zhang, J., Wolfe, S. and Demain, A.L. 1988. Phosphate repressible and inhibitable β-lactam synthetases in Cephalosporium acremonium strain C-10. Appl. Microbiol. Biotechnol. 29: 242–247.

    CAS  Google Scholar 

  3. Martin, J.F., Revilla, G., Zanca D.M. and Lopez-Nieto, M.J. 1982. Carbon catabolite regulation of penicillin and cephalosporin biosynthesis, p. 258–268. In: Trends of Antibiotic Research. Umezama, H., Demain, A. L., Hata, T. and Hutchinson, C. R. (Eds.). Japan Antibiotics Research Association, Tokyo. Japan.

    Google Scholar 

  4. Hilgendorf, P., Heiser, V., Diekmann, H. and Thoma, M. 1987. Constant dissolved oxygen concentrations in cephalosporin C fermentation: Applicability of different controllers and effect on fermentation parameters. Appl. Microbiol. Biotechnol. 27: 247–251.

    Article  CAS  Google Scholar 

  5. Magnolo, S.K., Leenutaphong, D.L., DeModena, J.A., Curtis, J.E., Bailey, J.E., Galazzo, J.L. and Hughes, D.E. 1991. Actinorhodin production by Streptomyces coelicolor and growth of Streptomyces lividans are improved by the expression of a bacterial hemoglobin. Bio/Technology 9: 473–476.

    CAS  Google Scholar 

  6. Khosla, C, Curtis, J.E., DeModena, J.A., Rinas, U. and Bailey, J.E. 1990. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Bio/Technology 8: 849–853.

    CAS  Google Scholar 

  7. Gutiérrez, S., Díez, B., Alvarez, E., Barredo, J.L. and Martín, J.F. 1991. Expression of the penDE gene of Penicillium chrysogenum encoding isopenicillin N acetyltransferase in Cephalosporium acremonium: production of ben-zylpenicillin by the transformants. Mol. Gen. Genet. 225: 56–64.

    Article  PubMed  Google Scholar 

  8. Jain, S., Durand, H. and Tiraby, G. 1992. Development of a transformation system for the thermophilic fungus Talaromyces sp. CL240 based on the use of phleomycin resistance as a dominant selectable marker. Mol. Gen Genet. 234: 489–493.

    Article  CAS  PubMed  Google Scholar 

  9. Khosla, C. and Bailey, J.E. 1989. Evidence for partial export of Vitreoscilla hemoglobin into the periplasmic space in Escherichia coli. J. Mol. Biol. 210: 79–89.

    Article  CAS  PubMed  Google Scholar 

  10. Herold, T., Bayer, T. and Schügerl, K. 1988. Cephalosporin production in a stirred tank reactor. Appl. Microbiol. Biotechnol. 29: 168–173.

    Article  CAS  Google Scholar 

  11. Demain, A.L. 1983. Strain exchange between industry and academia. ASM News 49: 431.

    Google Scholar 

  12. Cantoral, J.M., GutiZérrez, S., Fierro, F., Gil-Espinosa, S. and Martín, J.F. 1993. Biochemical characterization and molecular genetics of nine mutants of Penicillium chrysogenum impaired in penicillin biosynthesis. J. Biol. Chem. 268: 737–744.

    CAS  PubMed  Google Scholar 

  13. Aoki, H., Sakai, H., Kohsaka, M., Konomi, T., Hosoda, J., Kubochi, Y., Iguchi, E. and Imanaka, H. 1976. Nocardicin A, a new monocyclic β-lactam antibiotic. I. Discovery, isolation and characterization. J. Antibiotics 29: 492–500.

    Article  CAS  Google Scholar 

  14. Shen, Y.-Q., Wolfe, S. and Demain, A.L. 1986. Levels of isopenicillin N synthetase and deacetoxycephalosporin C synthetase in Cephalosporium acremonium producing high and low levels of cephalosporin C. Bio/Technology 4: 61–63.

    CAS  Google Scholar 

  15. Kolar, M., Punt, P.J., van den Hondel, C.A.M.J.J. and Schwab, H. 1988. Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli locZ fusion gene. Gene 62: 127–134.

    Article  CAS  PubMed  Google Scholar 

  16. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989.Molecular Cloning. A Laboratory Manual, 2nd. ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  17. LePage, G.A. and Campbell, E. 1946. Preparation of streptomycin. J. Biol. Chem. 162: 163–171.

    CAS  Google Scholar 

  18. Skatrud, P.L., Queener, S.W., Carr, L., G., Fisher, D.L. 1987. Efficient integrative transformation of Cephalosporium acremonium. Curr. Genetics 12: 337–348.

    Article  CAS  Google Scholar 

  19. Gutiérrez, S., Velasco, J., Fernández, F.J.,and Martín, J.F. 1992. The cef G gene of Cephalosporium acremonium is linked to the cef EF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. J. Bacteriol. 174: 3056–3064.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cantoral, J.M., Díez, B., Barredo, J.L., Alvarez, E. and Martín, J.F. 1987. High frequency transformation of Penicillium chrysogenum. Bio/Technology 5: 494—497.

    CAS  Google Scholar 

  21. Ward, M., Wilson, L.J., Kodama, K.H., Rey, M.W. and Berka, R.M. 1946. Improved production of chymosin in Aspergillus by expression of a gluco-amylase-chymosin fusion. Bio/Technology 8: 435–440.

    Google Scholar 

  22. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D., Smith, J.A., Seidman, J.G. and Struhl, K. 1987. Current Protocols in Molecular Biology, p. 4.3.1–4.3.4, John Wiley and Sons, New York.

  23. Samson, S.M., Dotzlaf, J.E., Slisz, M.L., Becker, G.W., Van Frank, R.M., Veal, L.E., Yeh, W.-K., Miller, J.R., Queener, S.W. and Ingolia, T.D. 1987. Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Bio/Technology 5: 1207–1214.

    CAS  Google Scholar 

  24. Webster, D.A. and Liu, C.Y. 1974. Reduced nicotinamide adenine dinucleotide cytochrome o reductase associated with cytochrome a purified from Vitreoscilla. J. Biol. Chem. 249: 42–59.

    Google Scholar 

  25. Zanca, D.M. and Martín, J.F. 1983. Carbon catabolite regulation of the conversion of penicillin N into cephalosporin C. J. Antibiotics 36: 700–708.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeModena, J., Gutiérrez, S., Velasco, J. et al. The Production of Cephalosporin C by Acremonium chrysogenum is Improved by the Intracellular Expression of a Bacterial Hemoglobin. Nat Biotechnol 11, 926–929 (1993). https://doi.org/10.1038/nbt0893-926

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0893-926

  • Springer Nature America, Inc.

This article is cited by

Navigation