Skip to main content
Log in

Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Calculations of the energetics of terrestrial accretion indicate that the Earth was extensively molten in its early history1. Examination of early Archaean rocks from West Greenland (3.6–3.8 Gyr old) using short-lived 146Sm–142Nd chronometry indicates that an episode of mantle differentiation took place close to the end of accretion (4.46 ± 0.11 Gyr ago)2,3,4. This has produced a chemically depleted mantle with an Sm/Nd ratio higher than the chondritic value. In contrast, application of 176Lu–176Hf systematics to 3.6–3.8-Gyr-old zircons from West Greenland indicates derivation from a mantle source with a chondritic Lu/Hf ratio5,6,7. Although an early Sm/Nd fractionation could be explained by basaltic crust formation8, magma ocean crystallization2 or formation of continental crust, the absence of coeval Lu/Hf fractionation is in sharp contrast with the well-known covariant behaviour of Sm/Nd and Lu/Hf ratios in crustal formation processes5. Here we show using mineral–melt partitioning data for high-pressure mantle minerals that the observed Nd and Hf signatures could have been produced by segregation of melt from a crystallizing magma ocean at upper-mantle pressures early in Earth's history. This residual melt would have risen buoyantly and ultimately formed the earliest terrestrial protocrust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Model for the crystallization of a terrestrial magma ocean.
Figure 2: Evolution of Sm/Nd and Lu/Hf ratios of residual melt during crystallization of a magma ocean at lower-mantle pressures.
Figure 3: Fractionation of Sm/Nd and Lu/Hf ratios generated by segregation of melt from a crystallizing magma ocean under upper-mantle conditions.

Similar content being viewed by others

References

  1. Tonks, B. T. & Melosh, H. J. Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993)

    Article  ADS  Google Scholar 

  2. Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. 146Sm-142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle. Nature 423, 428–432 (2003)

    Article  CAS  ADS  Google Scholar 

  3. Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth's mantle. Geochim. Cosmochim. Acta (submitted)

  4. Harper, C. L. & Jacobsen, S. B. Evidence from coupled 147Sm-143Nd and 146Sm-142Nd systematics for very early (4.5-Gyr) differentiation of the Earth's mantle. Nature 360, 728–732 (1992)

    Article  CAS  ADS  Google Scholar 

  5. Vervoort, J. D. & Blichert-Toft, J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 63, 533–556 (1999)

    Article  CAS  ADS  Google Scholar 

  6. Amelin, Y., Lee, D.-C. & Halliday, A. N. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochim. Cosmochim. Acta 64, 4205–4225 (2000)

    Article  CAS  ADS  Google Scholar 

  7. Scherer, E., Münker, C. & Mezger, K. Calibration of the lutetium-hafnium clock. Science 293, 683–686 (2001)

    Article  CAS  ADS  Google Scholar 

  8. Chase, C. G. & Patchett, P. J. Stored mafic/ultramafic crust and early Archean mantle depletion. Earth Planet. Sci. Lett. 91, 66–72 (1988)

    Article  CAS  ADS  Google Scholar 

  9. Corgne, A. & Wood, B. J. Trace element partitioning between majoritic garnet and silicate melt at 25 GPa. Phys. Earth Planet. Inter 143–144, 407–419 (2004)

    Article  ADS  Google Scholar 

  10. Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C. & Frost, D. J. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005)

    Article  CAS  ADS  Google Scholar 

  11. Walter, M. J., Nakamura, E., Trønnes, R. G. & Frost, D. J. Experimental constraints on crystallization differentiation in a deep magma ocean. Geochim. Cosmochim. Acta 68, 4267–4284 (2004)

    Article  CAS  ADS  Google Scholar 

  12. Bizzarro, M., Baker, J. A., Haack, H., Ulbeck, D. & Rosing, M. G. Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites. Nature 421, 931–933 (2003)

    Article  CAS  ADS  Google Scholar 

  13. Patchett, P. J., Vervoort, J. D., Söderlund, U. & Salters, V. J. M. Lu-Hf and Sm-Nd isotopic systematics in chondrites and their constraints on the Lu-Hf properties of the Earth. Earth Planet. Sci. Lett. 222, 29–41 (2004)

    Article  CAS  ADS  Google Scholar 

  14. Söderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 219, 311–324 (2004)

    Article  ADS  Google Scholar 

  15. Blichert-Toft, J. & Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243–258 (1997)

    Article  CAS  ADS  Google Scholar 

  16. Solomatov, V. S. & Stevenson, D. J. Nonfractional crystallization of a terrestrial magma ocean. J. Geophys. Res. 98, 5391–5406 (1993)

    Article  ADS  Google Scholar 

  17. Abe, T. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 27–39 (1997)

    Article  CAS  ADS  Google Scholar 

  18. Kato, T., Ringwood, A. E. & Irifune, T. Experimental determination of element partitioning between silicate perovskites, garnets and liquids: constraints on early differentiation of the mantle. Earth Planet. Sci. Lett. 89, 123–145 (1988)

    Article  CAS  ADS  Google Scholar 

  19. Ringwood, A. E. Phase transformations and the constitution of the mantle. Phys. Earth Planet. Inter. 3, 109–155 (1970)

    Article  CAS  ADS  Google Scholar 

  20. Hirose, K. Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle. J. Geophys. Res. 107(B4), 2078, doi:10.1029/2001JB000597 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  21. Wood, B. J. Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth Planet. Sci. Lett. 174, 341–354 (2000)

    Article  CAS  ADS  Google Scholar 

  22. Kesson, S. E., Fitz Gerald, J. D. & Shelley, J. M. Mineralogy and dynamics of a pyrolite lower mantle. Nature 393, 252–255 (1998)

    Article  CAS  ADS  Google Scholar 

  23. Salters, V. & Longhi, J. Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet. Sci. Lett. 166, 15–30 (1999)

    Article  CAS  ADS  Google Scholar 

  24. Draper, D. S., Xirouchakis, D. & Agee, C. B. Trace element partitioning between garnet and chondritic melt from 5 to 9 GPa: implications for the onset of the majorite transition in the martian mantle. Phys. Earth Planet. Inter. 139, 149–169 (2003)

    Article  CAS  ADS  Google Scholar 

  25. Ito, E., Kubo, A., Katsura, T. & Walter, M. J. Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation. Phys. Earth Planet. Inter. 143–144, 397–406 (2004)

    Article  ADS  Google Scholar 

  26. Zhang, J. & Herzberg, C. Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J. Geophys. Res. 99(B9), 17729–17742 (1994)

    Article  ADS  Google Scholar 

  27. Trønnes, R. G. & Frost, D. J. Peridotite melting and mineral-melt partitioning of major and minor elements at 22–24.5 GPa. Earth Planet. Sci. Lett. 197, 117–131 (2002)

    Article  ADS  Google Scholar 

  28. Corgne, A. & Wood, B. J. Trace element partitioning and substitution mechanisms in calcium perovskites. Contrib. Mineral. Petrol. 149, 85–97, doi:10.1007/s00410–004–0638–3 (2005)

    Article  CAS  ADS  Google Scholar 

  29. Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, Q05004, doi:10.1029/2003GC000597 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. G. S. Labrosse, J. Blichert-Toft and A. Halliday for discussions. Comments and suggestions by M. Rekhämper and J. Vervoort greatly improved the manuscript. This study was partly supported by the CNRS research programmes IT and PNP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Caro.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Estimating the Lu/Hf ratio of hadean depleted mantle using Hf isotope data in Amîtsoq zircons (West Greenland, 3.6 - 3.8 Gyr). (PDF 83 kb)

Supplementary Table S1

Compilation of Lu-Hf data for Jack Hills (Australia) and Amîtsoq (West Greenland) zircons. (PDF 45 kb)

Supplementary Table S2

Crystal/melt partition coefficients for Lu, Hf, Sm and Nd used in fractional and equilibrium crystallization models. (PDF 40 kb)

Supplementary Equations

Equations applied in the modeling of Lu/Hf and Sm/Nd fractionation during magma ocean crystallization. (PDF 461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caro, G., Bourdon, B., Wood, B. et al. Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436, 246–249 (2005). https://doi.org/10.1038/nature03827

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03827

  • Springer Nature Limited

This article is cited by

Navigation