Skip to main content
Log in

From molecular noise to behavioural variability in a single bacterium

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The chemotaxis network that governs the motion of Escherichia coli has long been studied to gain a general understanding of signal transduction. Although this pathway is composed of just a few components, it exhibits some essential characteristics of biological complexity, such as adaptation and response to environmental signals1. In studying intracellular networks, most experiments and mathematical models2,3,4,5 have assumed that network properties can be inferred from population measurements. However, this approach masks underlying temporal fluctuations of intracellular signalling events. We have inferred fundamental properties of the chemotaxis network from a noise analysis of behavioural variations in individual bacteria. Here we show that certain properties established by population measurements, such as adapted states, are not conserved at the single-cell level: for timescales ranging from seconds to several minutes, the behaviour of non-stimulated cells exhibit temporal variations much larger than the expected statistical fluctuations. We find that the signalling network itself causes this noise and identify the molecular events that produce it. Small changes in the concentration of one key network component suppress temporal behavioural variability, suggesting that such variability is a selected property of this adaptive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Schematic view of the apparatus.
Figure 2: Noise of the chemotaxis network.
Figure 3: Behavioural variability as a function of [CheR].
Figure 4: Simulated variability of the chemotaxis network.

Similar content being viewed by others

References

  1. Bourret, R. B. & Stock, A. M. Molecular information processing: lessons from bacterial chemotaxis. J. Biol. Chem. 277, 9625–9628 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Spiro, P. A., Parkinson, J. S. & Othmer, H. G. A model of excitation and adaptation in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 94, 7263–7268 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Alon, U. et al. Response regulator output in bacterial chemotaxis. EMBO J. 17, 4238–4248 (1998)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Morton-Firth, C. J., Shimizu, T. S. & Bray, D. A free-energy-based stochastic simulation of the Tar receptor complex. J. Mol. Biol. 286, 1059–1074 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Morton-Firth, C. J. & Bray, D. Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192, 117–128 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Katz, B. & Miledi, R. Statistical nature of acetycholine potential and its molecular components. J. Physiol. (Lond.) 224, 665–699 (1972)

    Article  CAS  PubMed  Google Scholar 

  9. Samuel, A. D. & Berg, H. C. Fluctuation analysis of rotational speeds of the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 92, 3502–3506 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rao, C. V., Wolf, D. M. & Arkin, A. P. Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W. W. & Adler, J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249, 74–77 (1974)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Cluzel, P., Surette, M. & Leibler, S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287, 1652–1655 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Block, S. M., Segall, J. E. & Berg, H. C. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154, 312–323 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishihara, A., Segall, J. E., Block, S. M. & Berg, H. C. Coordination of flagella on filamentous cells of Escherichia coli. J. Bacteriol. 155, 228–237 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan, S. & Macnab, R. M. The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by protonmotive force. J. Mol. Biol. 138, 563–597 (1980)

    Article  CAS  PubMed  Google Scholar 

  16. Fahrner, K. A. Studies of Bacterial Flagellar Motors and Filaments. PhD thesis, Harvard Univ. (1995)

    Google Scholar 

  17. Yi, T. M., Huang, Y., Simon, M. I. & Doyle, J. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl Acad. Sci. USA 97, 4649–4653 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asakura, S. & Honda, H. Two-state model for bacterial chemoreceptor proteins. The role of multiple methylation. J. Mol. Biol. 176, 349–367 (1984)

    Article  CAS  PubMed  Google Scholar 

  19. Goldbeter, A. & Koshland, D. E. Jr An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl Acad. Sci. USA 78, 6840–6844 (1981)

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  20. Levit, M. N. & Stock, J. B. Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis. J. Biol. Chem. 277, 36760–36765 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Detwiler, P. B., Ramanathan, S., Sengupta, A. & Shraiman, B. I. Engineering aspects of enzymatic signal transduction: photoreceptors in the retina. Biophys. J. 79, 2801–2817 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elf, J., Paulsson, J., Berg, O. G. & Ehrenberg, M. Near-critical phenomena in intracellular metabolite pools. Biophys. J. 84, 154–170 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911–914 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Spudich, J. L. & Koshland, D. E. Jr Non-genetic individuality: chance in the single cell. Nature 262, 467–471 (1976)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.C. is indebted to S. Leibler in whose laboratory at Princeton University this work was begun. The authors thank J. Doyle for pointing out the existence of the power law in the CCW intervals distributions, H. Park for technical help with Labview software, U. Alon for sharing the expression vector pUA4, J. S. Parkinson for the RP8610 strain and the pRR27 vector, and F. Cattaneo for the use of computers. The authors are thankful to R. Albert, C. Guet, T. Griggs, C. Macal, M. North and R. Rosner for discussions and comments on the manuscript. This work was supported partially by the MRSEC programme of the NSF and the Cancer Research Foundation. T.E. acknowledges support from a joint research funding from the US Department of Energy. T.S.S. acknowledges support from NEDO, Ministry of Economy, Trade and Industry of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Cluzel.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korobkova, E., Emonet, T., Vilar, J. et al. From molecular noise to behavioural variability in a single bacterium. Nature 428, 574–578 (2004). https://doi.org/10.1038/nature02404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02404

  • Springer Nature Limited

This article is cited by

Navigation