Skip to main content
Log in

Revisiting the Design of the Long-Term Evolution Experiment with Escherichia coli

  • Review
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The long-term evolution experiment (LTEE) with Escherichia coli began in 1988 and it continues to this day, with its 12 populations having recently reached 75,000 generations of evolution in a simple, well-controlled environment. The LTEE was designed to explore open-ended questions about the dynamics and repeatability of phenotypic and genetic evolution. Here I discuss various aspects of the LTEE’s experimental design that have enabled its stability and success, including the choices of the culture regime, growth medium, ancestral strain, and statistical replication. I also discuss some of the challenges associated with a long-running project, such as handling procedural errors (e.g., cross-contamination) and managing the expanding collection of frozen samples. The simplicity of the experimental design and procedures have supported the long-term stability of the LTEE. That stability—along with the inherent creativity of the evolutionary process and the emergence of new genomic technologies—provides a platform that has allowed talented students and collaborators to pose questions, collect data, and make discoveries that go far beyond anything I could have imagined at the start of the LTEE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atolia E, Cesar S, Arjes HA, Rajendram M, Shi H, Knapp BD, Khare S, Aranda-Díaz A, Lenski RE, Huang KC (2020) Environmental and physiological factors affecting high-throughput measurements of bacterial growth. mBio 11:e01378-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmann BJ, Low KB (1980) Linkage map of Escherichia coli K-12, edition 6. Microbiol Rev 44:1–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajić D, Vila JCC, Blount ZD, Sanchez A (2018) On the deformability of an empirical fitness landscape by microbial evolution. Proc Natl Acad Sci USA 115:11286–11291

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrick JE, Lenski RE (2009) Genome-wide mutational diversity in an evolving population of Escherichia coli. Cold Spring Harbor Symp Quant Biol 74:119–129

    Article  CAS  PubMed  Google Scholar 

  • Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Barrick JE, Deatherage DE, Lenski RE (2020) A test of the repeatability of measurements of relative fitness in the long-term evolution experiment with Escherichia coli. In: Banzhaf W, Cheng BHC, Deb K, Holekamp KE, Lenski RE, Ofria C, Pennock RT, Punch WF, Whittaker DJ (eds) Evolution in action: Past, present and future. Springer, Cham, Switzerland, pp 77–89

    Chapter  Google Scholar 

  • Bennett AF, Lenski RE (1993) Evolutionary adaptation to temperature. II. Thermal niches of experimental lines of Escherichia coli. Evolution 47:1–12

    Article  PubMed  Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Blount ZD (2016) A case study in evolutionary contingency. Studies Hist Phil Sci, C 58:82–92

    Google Scholar 

  • Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105:7899–7906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blount ZD, Barrick JE, Davidson CJ, Lenski RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:513–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blount ZD, Maddamsetti R, Grant NA, Ahmed ST, Jagdish T, Baxter JA, Sommerfeld BA, Tillman A, Moore J, Slonczewski JL, Barrick JE, Lenski RE (2020) Genomic and phenotypic evolution of Escherichia coli in a novel citrate-only resource environment. eLife 9:e55414

    Article  PubMed  PubMed Central  Google Scholar 

  • Burke MK (2023) Embracing complexity: yeast evolution experiments featuring standing genetic variation. J Mol Evol, this issue

  • Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD (2010) Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature 467:587–590

    Article  CAS  PubMed  Google Scholar 

  • Burnetti A, Ratcliff WC (2022) Experimental evolution is not just for model organisms. PLoS Biol 20:e3001587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callaway E (2022) Legendary bacterial evolution experiment enters new era. Nature 606:634–635

    Article  CAS  PubMed  Google Scholar 

  • Card KJ, LaBar T, Gomez JB, Lenski RE (2019) Historical contingency in the evolution of antibiotic resistance after decades of relaxed selection. PLoS Biol 17:e3000397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consuegra J, Gaffé J, Lenski RE, Hindré T, Barrick JE, Tenaillon O, Schneider D (2021) IS-mediated mutations both promote and constrain evolvability during a long-term experiment with bacteria. Nat Commun 12:980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper TF (2007) Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol 5:e225

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper VS, Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:736–739

    Article  CAS  PubMed  Google Scholar 

  • Cooper TF, Lenski RE (2010) Experimental evolution with E. coli in diverse resource environments. I. Fluctuating environments promote divergence of replicate populations. BMC Evol Biol 10:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper VS, Bennett AF, Lenski RE (2001) Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment. Evolution 55:889–896

    Article  CAS  PubMed  Google Scholar 

  • Cooper TF, Rozen DE, Lenski RE (2003) Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proc Natl Acad Sci USA 100:1072–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daegelen P, Studier FW, Lenski RE, Cure S, Kim JF (2009) Tracing ancestors and relatives of Escherichia coli B, and the derivation of B strains REL606 and BL21(DE3). J Mol Biol 394:634–643

    Article  CAS  PubMed  Google Scholar 

  • Dawkins R (2004) The ancestor’s tale: a pilgrimage to the dawn of evolution. Houghton Mifflin, New York, NY

    Google Scholar 

  • de Visser JAGM, Lenski RE (2002) Long-term experimental evolution in Escherichia coli. XI. Rejection of non-transitive interactions as cause of declining rate of adaptation. BMC Evol Biol 2:19

    Article  PubMed  PubMed Central  Google Scholar 

  • de Visser JAGM, Zeyl CW, Gerrish PJ, Blanchard JL, Lenski RE (1999) Diminishing returns from mutation supply rate in asexual populations. Science 283:404–406

    Article  PubMed  Google Scholar 

  • Deatherage DE, Barrick JE (2021) High-throughput characterization of mutations in genes that drive clonal evolution using multiplex adaptome capture sequencing. Cell Syst 12:1187-1200.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elena SF, Lenski RE (1997) Long-term experimental evolution in Escherichia coli. VII. Mechanisms maintaining genetic variability within populations. Evolution 51:1058–1067

    PubMed  Google Scholar 

  • Falconer DS (1960) Introduction to quantitative genetics. Oliver & Boyd, Edinburgh, UK

    Google Scholar 

  • Fox JW, Lenski RE (2015) From here to eternity–the theory and practice of a really long experiment. PLoS Biol 13:e1002185

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerrish PJ, Lenski RE (1998) The fate of competing beneficial mutations in an asexual population. Genetica 102:127–144

    Article  PubMed  Google Scholar 

  • Gillespie JH (1991) The causes of molecular evolution. Oxford University Press, Oxford, UK

    Google Scholar 

  • Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM (2017) The dynamics of molecular evolution over 60,000 generations. Nature 551:45–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Gould SJ (1989) Wonderful life: the burgess shale and the nature of history. Norton, New York, NY

    Google Scholar 

  • Grant PR, Grant BR (2014) 40 Years of evolution: Darwin’s finches on Daphne major island. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Graves JL Jr, Hertweck KL, Phillips MA, Han MV, Cabral LG, Barter TT, Greer LF, Burke MK, Mueller LD, Rose MR (2017) Genomics of parallel experimental evolution in Drosophila. Mol Biol Evol 34:831–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izutsu M, Lenski RE (2022) Experimental test of the contributions of initial variation and new mutations to adaptive evolution in a novel environment. Front Ecol Evol 10:958406

    Article  Google Scholar 

  • Izutsu M, Lake DM, Matson ZWD, Dodson JP, Lenski RE (2021) Effects of periodic bottlenecks on the dynamics of adaptive evolution in microbial populations. bioRxiv 2021.12.29.474457

  • Jagdish T, Morris JJ, Wade BD, Blount ZD (2020) Probing the deep genetic basis of a novel trait in Escherichia coli. In: Banzhaf W, Cheng BHC, Deb K, Holekamp KE, Lenski RE, Ofria C, Pennock RT, Punch WF, Whittaker DJ (eds) Evolution in action: past, present and future. Springer, Cham, Switzerland, pp 107–122

    Chapter  Google Scholar 

  • Johnson MS, Gopalakrishnan S, Goyal J, Dillingham ME, Bakerlee CW, Humphrey PT, Jagdish T, Jerison ER, Kosheleva K, Lawrence KR, Min J, Moulana A, Phillips AM, Piper JC, Purkanti R, Rego-Costa A, McDonald MJ, Nguyen Ba AN, Desai MM (2021) Phenotypic and molecular evolution across 10,000 generations in laboratory budding yeast populations. eLife 10:e63910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, Desai MM (2013) Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500:571–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lederberg J, Tatum EL (1946) Gene recombination in E. coli. Nature 158:558

    Article  CAS  PubMed  Google Scholar 

  • Leiby N, Marx CJ (2014) Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli. PLoS Biol 12:e1001789

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenski RE (1988) Experimental studies of pleiotropy and epistasis in Escherichia coli. II. Compensation for maladaptive pleiotropic effects associated with resistance to virus T4. Evolution 42:433–440

    PubMed  Google Scholar 

  • Lenski RE (2004) Phenotypic and genomic evolution during a 20,000-generation experiment with the bacterium Escherichia coli. Plant Breeding Rev 24:225–265

    Google Scholar 

  • Lenski RE (2017a) Convergence and divergence in a long-term experiment with bacteria. Am Nat 190:S57–S68

    Article  PubMed  Google Scholar 

  • Lenski RE (2017b) What is adaptation by natural selection? Perspectives of an experimental microbiologist. PLoS Gen 13:e1006668

    Article  Google Scholar 

  • Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808–6814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenski RE, Rose MR, Simpson SC, Tadler SC (1991) Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 138:1315–1341

    Article  Google Scholar 

  • Lenski RE, Winkworth CL, Riley MA (2003) Rates of DNA sequence evolution in experimental populations of Escherichia coli during 20,000 generations. J Mol Evol 56:498–508

    Article  CAS  PubMed  Google Scholar 

  • Lenski RE, Wiser MJ, Ribeck N, Blount ZD, Nahum JR, Morris JJ, Zaman L, Turner CB, Wade BD, Maddamsetti R, Burmeister AR, Baird EJ, Bundy J, Grant NA, Card KJ, Rowles M, Weatherspoon K, Papoulis SE, Sullivan R, Clark C, Mulka JD, Hajela N (2015) Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli. Proc R Soc Lond B 282:20152292

    Google Scholar 

  • Leroi AM, Bennett AF, Lenski RE (1994) Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc Natl Acad Sci USA 91:1917–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levins R (1966) The strategy of model building in population biology. Am Sci 54:421–431

    Google Scholar 

  • Losos JB (2018) Improbable destinies: fate, chance, and the future of evolution. Penguin Random House, New York, NY

    Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddamsetti R, Lenski RE (2018) Analysis of bacterial genomes from an evolution experiment with horizontal gene transfer shows that recombination can sometimes overwhelm selection. PLoS Genet 14:e1007199

    Article  PubMed  PubMed Central  Google Scholar 

  • Maddamsetti R, Lenski RE, Barrick JE (2015) Adaptation, clonal interference, and frequency-dependent interactions in a long-term evolution experiment with Escherichia coli. Genetics 200:619–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez AA, Lang GI (2023) Identifying targets of selection in laboratory evolution experiments. J Mol Evol, this issue

  • Mongold JA, Bennett AF, Lenski RE (1996) Evolutionary adaptation to temperature. IV. Adaptation of Escherichia coli at a niche boundary. Evolution 50:35–43

    Article  PubMed  Google Scholar 

  • Moore FB-G, Woods R (2006) Tempo and constraint of adaptive evolution in Escherichia coli (Enterobacteriaceae, Enterobacteriales). Biol J Linn Soc 88:403–411

    Article  Google Scholar 

  • Moore FB-G, Rozen DE, Lenski RE (2000) Pervasive compensatory adaptation in Escherichia coli. Proc R Soc B 267:515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortlock RP (ed) (1984) Microorganisms as model systems for studying evolution. Plenum, New York, NY

    Google Scholar 

  • Papadopoulos D, Schneider D, Meier-Eiss J, Arber W, Lenski RE, Blot M (1999) Genomic evolution during a 10,000-generation experiment with bacteria. Proc Natl Acad Sci USA 96:3807–3812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paquin CE, Adams J (1983) Relative fitness can decrease in evolving asexual populations of S. cerevisiae. Nature 306:368–371

    Article  CAS  PubMed  Google Scholar 

  • Quandt EM, Deatherage DE, Ellington AD, Georgiou G, Barrick JE (2014) Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli. Proc Natl Acad Sci USA 111:2217–2222

    Article  CAS  PubMed  Google Scholar 

  • Quandt EM, Gollihar J, Blount ZD, Ellington AD, Georgiou G, Barrick JE (2015) Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment. eLife 4:e09696

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid SD, Herbelin CJ, Bumbaugh AC, Selander RK, Whittam TS (2000) Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406:64–67

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Pastor R, Shafran Y, Knossow N, Gutiérrez R, Harrus S, Zaman L, Lenski RE, Barrick JE, Hawlena H (2022) A roadmap for in vivo evolution experiments with blood-borne parasitic microbes. Mol Ecol Res 22:2843–2859

    Article  Google Scholar 

  • Rose MR (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38:1004–1010

    Article  PubMed  Google Scholar 

  • Rozen DE, Lenski RE (2000) Long-term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism. Am Nat 155:24–35

    Article  PubMed  Google Scholar 

  • Satterwhite RS, Cooper TF (2015) Constraints on adaptation of Escherichia coli to mixed-resource environments increase over time. Evolution 69:2067–2078

    Article  CAS  PubMed  Google Scholar 

  • Scheinin M, Riebesell U, Rynearson TA, Lohbeck KT, Collins S (2015) Experimental evolution gone wild. J Roy Soc Interface 12:20150056

    Article  Google Scholar 

  • Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabó G, Polz MF, Alm EJ (2012) Population genomics of early events in the ecological differentiation of bacteria. Science 336:48–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of Escherichia coli. Nature 387:703–705

    Article  CAS  PubMed  Google Scholar 

  • Souza V, Turner PE, Lenski RE (1997) Long-term experimental evolution in Escherichia coli. V. Effects of recombination with immigrant genotypes on the rate of bacterial evolution. J Evol Biol 10:743–769

    Article  Google Scholar 

  • Stanek MT, Cooper TF, Lenski RE (2009) Identification and dynamics of a beneficial mutation in a long-term evolution experiment with Escherichia coli. BMC Evol Biol 9:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern DL (2013) The genetic causes of convergent evolution. Nature Rev Gen 14:751–764

    Article  CAS  Google Scholar 

  • Studier FW, Daegelen P, Lenski RE, Maslov S, Kim JF (2009) Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes. J Mol Biol 394:653–680

    Article  CAS  PubMed  Google Scholar 

  • Tenaillon O, Skurnik D, Picard B, Denamur E (2010) The population genetics of commensal Escherichia coli. Nature Rev Microbiol 8:207–217

    Article  CAS  Google Scholar 

  • Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, Wu GC, Wielgoss S, Cruveiller S, Médigue C, Schneider D, Lenski RE (2016) Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536:165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travisano M, Lenski RE (1996) Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation. Genetics 143:15–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travisano M, Mongold JA, Bennett AF, Lenski RE (1995) Experimental tests of the roles of adaptation, chance, and history in evolution. Science 267:87–90

    Article  CAS  PubMed  Google Scholar 

  • Turner CB, Blount ZD, Lenski RE (2015) Replaying evolution to test the cause of extinction of one ecotype in an experimentally evolved population. PLoS ONE 10:e0142050

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasi F, Travisano M, Lenski RE (1994) Long-term experimental evolution in Escherichia coli. II. Changes in life-history traits during adaptation to a seasonal environment. Am Nat 144:432–456

    Article  Google Scholar 

  • Wiser MJ, Ribeck N, Lenski RE (2013) Long-term dynamics of adaptation in asexual populations. Science 342:1364–1367

    Article  CAS  PubMed  Google Scholar 

  • Woods R, Schneider D, Winkworth CL, Riley MA, Lenski RE (2006) Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc Natl Acad Sci USA 103:9107–9112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank everyone who has worked with me on the LTEE over the past 35 years, with special thanks to Jeff Barrick for leading it into the future. I also thank Greg Lang and Kerry Geiler-Samerotte for organizing this special issue, Jeff Barrick for helpful comments on an earlier version of this paper, and two reviewers for their useful suggestions on the submitted paper.

Funding

The LTEE is supported by the US National Science Foundation (Grant No. DEB-1951307) and the John Hannah endowment at Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Lenski.

Additional information

Handling editor: Greg Lang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenski, R.E. Revisiting the Design of the Long-Term Evolution Experiment with Escherichia coli. J Mol Evol 91, 241–253 (2023). https://doi.org/10.1007/s00239-023-10095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-023-10095-3

Keywords

Navigation