Skip to main content

Advertisement

Log in

Cytogenetics and Molecular Genetics

AML with translocation t(8;16)(p11;p13) demonstrates unique cytomorphological, cytogenetic, molecular and prognostic features

  • Original Article
  • Published:
Leukemia Submit manuscript

Abstract

Balanced chromosomal rearrangements define distinct entities in acute myeloid leukemia (AML). Here, we present 13 AML cases with t(8;16)(p11;p13) with observed low incidence (13/6124 patients), but more frequent presentation in therapy-related AML than in de novo AML (7/438 versus 6/5686, P=0.00001). Prognosis was poor with median overall survival of 4.7 months. Cytomorphology was characterized by parallel positive myeloperoxidase and non-specific esterase staining, therefore, French–American–British (FAB)-classification was impossible and origin of the AML with t(8;16) from an early stem cell with myeloid and monoblastic potential is hypothesized. Erythrophagocytosis was observed in 7/13 cases. Using gene expression profiling on 407 cases, patients with t(8;16) were compared to AML FAB subtypes with normal karyotype. Principal component analyses demonstrated that AML with t(8;16) were distinct from FAB subtypes M1, M4, M5a/b. When further compared to AML showing balanced rearrangements, that is, current WHO categories t(15;17), t(8;21), inv(16) and t(11q23)/MLL, AML with t(8;16) cases were clustered close to t(11q23)/MLL sharing commonly expressed genes. Subsequently, a pairwise comparison discriminated AML with t(8;16) from AML with t(11q23)/MLL, thus defining a highly unique signature for AML with t(8;16). In conclusion, AML with t(8;16) demonstrates unique cytomorphological, cytogenetic, molecular and prognostic features and is a specific subtype of AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bloomfield CD, Shuma C, Regal L, Philip PP, Hossfeld DK, Hagemeijer AM et al. Long-term survival of patients with acute myeloid leukemia: a third follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer 1997; 80 (11 Suppl): 2191–2198.

    Article  CAS  Google Scholar 

  2. Schoch C, Kern W, Schnittger S, Hiddemann W, Haferlach T . Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia 2004; 18: 120–125.

    Article  CAS  Google Scholar 

  3. Swansbury GJ, Lawler SD, Alimena G, Arthur D, Berger R, Van den BH et al. Long-term survival in acute myelogenous leukemia: a second follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer Genet Cytogenet 1994; 73: 1–7.

    Article  CAS  Google Scholar 

  4. Haferlach T, Kohlmann A, Schnittger S, Dugas M, Hiddemann W, Kern W et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood 2005; 106: 1189–1198.

    Article  CAS  Google Scholar 

  5. Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddemann W, Kern W et al. Molecular characterization of acute leukemias by use of microarray technology. Genes Chromosomes Cancer 2003; 37: 396–405.

    Article  CAS  Google Scholar 

  6. Schoch C, Kohlmann A, Schnittger S, Brors B, Dugas M, Mergenthaler S et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci USA 2002; 99: 10008–10013.

    Article  CAS  Google Scholar 

  7. Gilliland DG . Hematologic malignancies. Curr Opin Hematol 2001; 8: 189–191.

    Article  CAS  Google Scholar 

  8. Jaffe ES, Stein H, Vardiman JW . World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2001.

    Google Scholar 

  9. Gervais C, Murati A, Helias C, Struski S, Eischen A, Lippert E et al. Acute myeloid leukaemia with 8p11 (MYST3) rearrangement: an integrated cytologic, cytogenetic and molecular study by the groupe francophone de cytogenetique hematologique. Leukemia 2008; 22: 1567–1575.

    Article  CAS  Google Scholar 

  10. Troke PJ, Kindle KB, Collins HM, Heery DM . MOZ fusion proteins in acute myeloid leukaemia. Biochem Soc Symp 2006; 73): 23–39.

    Article  Google Scholar 

  11. Jacobson S, Pillus L . Modifying chromatin and concepts of cancer. Curr Opin Genet Dev 1999; 9: 175–184.

    Article  CAS  Google Scholar 

  12. Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M . Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. EMBO J 2001; 20: 7184–7196.

    Article  CAS  Google Scholar 

  13. Schmidt HH . MYST3/CREBBP (MOZ/CBP) and CREBBP/MYST3 (CBP/MOZ) transcripts in AML with t(8;16)(p11;p13). Genes Chromosomes Cancer 2005; 42: 207–208.

    Article  CAS  Google Scholar 

  14. Stark B, Resnitzky P, Jeison M, Luria D, Blau O, Avigad S et al. A distinct subtype of M4/M5 acute myeloblastic leukemia (AML) associated with t(8:16)(p11:p13), in a patient with the variant t(8:19)(p11:q13)—case report and review of the literature. Leuk Res 1995; 19: 367–379.

    Article  CAS  Google Scholar 

  15. Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pebusque MJ . MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer 2000; 28: 138–144.

    Article  CAS  Google Scholar 

  16. Coulthard S, Chase A, Orchard K, Watmore A, Vora A, Goldman JM et al. Two cases of inv(8)(p11q13) in AML with erythrophagocytosis: a new cytogenetic variant. Br J Haematol 1998; 100: 561–563.

    Article  CAS  Google Scholar 

  17. Liang J, Prouty L, Williams BJ, Dayton MA, Blanchard KL . Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 1998; 92: 2118–2122.

    CAS  Google Scholar 

  18. Panagopoulos I, Teixeira MR, Micci F, Hammerstrom J, Isaksson M, Johansson B et al. Acute myeloid leukemia with inv(8)(p11q13). Leuk Lymphoma 2000; 39: 651–656.

    Article  CAS  Google Scholar 

  19. Panagopoulos I, Fioretos T, Isaksson M, Samuelsson U, Billstrom R, Strombeck B et al. Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet 2001; 10: 395–404.

    Article  CAS  Google Scholar 

  20. Glassman AB, Hayes KJ . Translocation (11;16)(q23;p13) acute myelogenous leukemia and myelodysplastic syndrome. Ann Clin Lab Sci 2003; 33: 285–288.

    CAS  Google Scholar 

  21. Haferlach T, Bacher U, Kern W, Schnittger S, Haferlach C . Diagnostic pathways in acute leukemias: a proposal for a multimodal approach. Ann Hematol 2007; 86: 311–327.

    Article  Google Scholar 

  22. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458.

    Article  CAS  Google Scholar 

  23. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 620–625.

    Article  CAS  Google Scholar 

  24. Borrow J, Stanton Jr VP, Andresen JM, Becher R, Behm FG, Chaganti RS et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 1996; 14: 33–41.

    Article  CAS  Google Scholar 

  25. Schmidt HH, Strehl S, Thaler D, Strunk D, Sill H, Linkesch W et al. RT-PCR and FISH analysis of acute myeloid leukemia with t(8;16)(p11;p13) and chimeric MOZ and CBP transcripts: breakpoint cluster region and clinical implications. Leukemia 2004; 18: 1115–1121.

    Article  CAS  Google Scholar 

  26. Murati A, Adelaide J, Quilichini B, Remy V, Sainty D, Stoppa AM et al. New types of MYST3-CBP and CBP-MYST3 fusion transcripts in t(8;16)(p11;p13) acute myeloid leukemias. Haematologica 2007; 92: 262–263.

    Article  CAS  Google Scholar 

  27. Kohlmann A, Schoch C, Dugas M, Rauhut S, Weninger F, Schnittger S et al. Pattern robustness of diagnostic gene expression signatures in leukemia. Genes Chromosomes Cancer 2005; 42: 299–307.

    Article  CAS  Google Scholar 

  28. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  Google Scholar 

  29. Smyth GK . Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: Article3.

    Article  Google Scholar 

  30. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 1995; 57: 289–300.

    Google Scholar 

  31. Vapnik VN . The Nature of Statistical Learning Theory 1995.

  32. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland MC et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 2008; 112: 4193–4201.

    Article  CAS  Google Scholar 

  33. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ et al. A network-based analysis of systemic inflammation in humans. Nature 2005; 437: 1032–1037.

    Article  CAS  Google Scholar 

  34. Becher R, Haas OA, Graeven U, Bettelheim P, Ambros P, Fridrik M et al. Translocation t(8;16) in acute monocytic leukemia. Cancer Genet Cytogenet 1988; 34: 265–271.

    Article  CAS  Google Scholar 

  35. Velloso ER, Mecucci C, Michaux L, Van OA, Stul M, Boogaerts M et al. Translocation t(8;16)(p11;p13) in acute non-lymphocytic leukemia: report on two new cases and review of the literature. Leuk Lymphoma 1996; 21: 137–142.

    Article  CAS  Google Scholar 

  36. Zandecki M, Lai JL, Mazingue F, Lepelley P, Chassaing O, Farriaux JP et al. Congenital acute monoblastic leukemia with double translocation (8;16) (p11;p13) and (16;20) (q13;p13). Nouv Rev Fr Hematol 1988; 30: 247–250.

    CAS  PubMed  Google Scholar 

  37. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605–1616.

    Article  CAS  Google Scholar 

  38. Debernardi S, Lillington DM, Chaplin T, Tomlinson S, Amess J, Rohatiner A et al. Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of homeobox gene expression distinct from those with translocation-mediated fusion events. Genes Chromosomes Cancer 2003; 37: 149–158.

    Article  CAS  Google Scholar 

  39. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–3687.

    Article  CAS  Google Scholar 

  40. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  Google Scholar 

  41. Armstrong SA, Staunton JE, Silverman LB, Pieters R, Den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  Google Scholar 

  42. Kohlmann A, Schoch C, Dugas M, Schnittger S, Hiddemann W, Kern W et al. New insights into MLL gene rearranged acute leukemias using gene expression profiling: shared pathways, lineage commitment, and partner genes. Leukemia 2005; 19: 953–964.

    Article  CAS  Google Scholar 

  43. Mitelman F, Heim S . Quantitative acute leukemia cytogenetics. Genes Chromosomes Cancer 1992; 5: 57–66.

    Article  CAS  Google Scholar 

  44. Bernasconi P, Orlandi E, Cavigliano P, Calatroni S, Boni M, Astori C et al. Translocation (8;16) in a patient with acute myelomonocytic leukemia, occurring after treatment with fludarabine for a low-grade non-Hodgkin's lymphoma. Haematologica 2000; 85: 1087–1091.

    CAS  PubMed  Google Scholar 

  45. Quesnel B, Kantarjian H, Bjergaard JP, Brault P, Estey E, Lai JL et al. Therapy-related acute myeloid leukemia with t(8;21), inv(16), and t(8;16): a report on 25 cases and review of the literature. J Clin Oncol 1993; 11: 2370–2379.

    Article  CAS  Google Scholar 

  46. Heim S, Avanzi GC, Billstrom R, Kristoffersson U, Mandahl N, Bekassy AN et al. A new specific chromosomal rearrangement, t(8;16) (p11;p13), in acute monocytic leukaemia. Br J Haematol 1987; 66: 323–326.

    Article  CAS  Google Scholar 

  47. Michallet AS, Lai JL, Bauters F, Fenaux P, Quesnel B . A new case of therapy-related acute myeloid leukaemia with t(8;16)(p11;p13). Br J Haematol 1998; 100: 801–802.

    Article  CAS  Google Scholar 

  48. Schoch C, Schnittger S, Klaus M, Kern W, Hiddemann W, Haferlach T . AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 2003; 102: 2395–2402.

    Article  CAS  Google Scholar 

  49. Bacher U, Kern W, Schnittger S, Hiddemann W, Schoch C, Haferlach T . Further correlations of morphology according to FAB and WHO classification to cytogenetics in de novo acute myeloid leukemia: a study on 2,235 patients. Ann Hematol 2005; 84: 785–791.

    Article  Google Scholar 

  50. Haferlach T, Schoch C, Schnittger S, Kern W, Loffler H, Hiddemann W . Distinct genetic patterns can be identified in acute monoblastic and acute monocytic leukaemia (FAB AML M5a and M5b): a study of 124 patients. Br J Haematol 2002; 118: 426–431.

    Article  CAS  Google Scholar 

  51. Camos M, Esteve J, Jares P, Colomer D, Rozman M, Villamor N et al. Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res 2006; 66: 6947–6954.

    Article  CAS  Google Scholar 

  52. Murati A, Gervais C, Carbuccia N, Finetti P, Cervera N, Adelaide J et al. Genome profiling of acute myelomonocytic leukemia: alteration of the MYB locus in MYST3-linked cases. Leukemia 2009; 23: 85–94.

    Article  CAS  Google Scholar 

  53. Zhang H, Rider Jr SD, Henderson JT, Fountain M, Chuang K, Kandachar V et al. The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27. J Biol Chem 2008; 283: 22637–22648.

    Article  CAS  Google Scholar 

  54. Saether T, Berge T, Ledsaak M, Matre V, lm-Kristiansen AH, Dahle O et al. The chromatin remodeling factor Mi-2alpha acts as a novel co-activator for human c-Myb. J Biol Chem 2007; 282: 13994–14005.

    Article  CAS  Google Scholar 

  55. Yanagisawa H, Nagasawa T, Kuramochi S, Abe T, Ikawa Y, Todokoro K . Constitutive expression of exogenous c-myb gene causes maturation block in monocyte-macrophage differentiation. Biochim Biophys Acta 1991; 1088: 380–384.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant from the German José Carreras Foundation (DJCS-R00/13). Microarray analyses were further supported in part by Roche Diagnostics GmbH, Penzberg, Germany and Roche Molecular Systems, Pleasanton, CA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Haferlach.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haferlach, T., Kohlmann, A., Klein, HU. et al. AML with translocation t(8;16)(p11;p13) demonstrates unique cytomorphological, cytogenetic, molecular and prognostic features. Leukemia 23, 934–943 (2009). https://doi.org/10.1038/leu.2008.388

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.388

  • Springer Nature Limited

Keywords

This article is cited by

Navigation