Skip to main content
Log in

Further correlations of morphology according to FAB and WHO classification to cytogenetics in de novo acute myeloid leukemia: a study on 2,235 patients

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

In routine diagnostic procedures of acute myeloid leukemia (AML), the French–American–British (FAB) and World Health Organization (WHO) classifications both play a central role. Some morphologic subtypes are specifically associated to distinct cytogenetic and molecular aberrations; however, such close correlations do not exist for the majority of entities. We evaluated cytogenetics in 2,235 patients at diagnosis of AML with the FAB subtypes M0–2, M4, and M5–7. The cytogenetic patterns of these subtypes showed differences with respect to the clonal aberration rate and the incidence of complex aberrant karyotypes. The frequency of numerical gains and losses and of structural losses and the incidence of 11q23/MLL rearrangements differed. Thus, cytomorphology of AML may be helpful to support or even initiate other diagnostic procedures, e.g., interphase fluorescence in situ hybridization and polymerase chain reaction. In conclusion, the central role of morphology as defined by the FAB and WHO classification in AML at diagnosis is still justified in combination with other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bene MC, Bernier M, Casasnovas RO, Castoldi G, Doekharan D, van der Holt B, Knapp W, Lemez P, Ludwig WD, Matutes E, Orfao A, Schoch C, Sperling C, van’t Veer MB (2001) Acute myeloid leukaemia MO: haematological, immunophenotypic and cytogenetic characteristics and their prognostic significance: an analysis in 241 patients. Br J Haematol 113:737–745

    Article  PubMed  CAS  Google Scholar 

  2. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C (1976) Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group. Br J Haematol 33:451–458

    PubMed  CAS  Google Scholar 

  3. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C (1985) Proposed revised criteria for the classification of acute myeloid leukemia—a report of the French–American–British Cooperative Group. Ann Intern Med 103:620–625

    PubMed  CAS  Google Scholar 

  4. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C (1991) Proposal for the recognition of minimally differentiated acute myeloid leukemia (Aml-Mo). Br J Haematol 78:325–329

    PubMed  CAS  Google Scholar 

  5. Bloomfield CD, Herzig GP, Caligiuri MA (1997) Introduction: acute leukemia: recent advances. Semin Oncol 24:1–2

    PubMed  CAS  Google Scholar 

  6. Cascavilla N, Melillo L, D’arena G, Greco MM, Carella AM, Sajeva MR, Perla G, Matera R, Minervini MM, Carotenuto M (2000) Minimally differentiated acute myeloid leukemia (AML MO): clinico-biological findings of 29 cases. Leuk Lymphoma 37:105–113

    PubMed  CAS  Google Scholar 

  7. Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH, Schiffer CA, Doekner H, Tallman MS, Lister TA, LoCocco F, Willemze R, Biondi A, Hiddemann W, Larson RA, Lowenberg B, Sanz MA, Head DR, Ohno R, Bloomfield CD (2003) Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21:4642–4649

    Article  PubMed  Google Scholar 

  8. Cuneo A, Ferrant A, Michaux JL, Boogaerts M, Demuynck H, Vanorshoven A, Criel A, Stul M, Dalcin P, Hernandez J, Chatelain B, Doyen C, Louwagie A, Castoldi G, Cassiman JJ, Vandenberghe H (1995) Cytogenetic profile of minimally differentiated (Fab M0) acute myeloid leukemia—correlation with clinicobiologic findings. Blood 85:3688–3694

    PubMed  CAS  Google Scholar 

  9. Cuttner J, Seremetis S, Najfeld V, Dimitriubona A, Winchester RA (1984) Tdt-positive acute leukemia with monocytoid characteristics—clinical, cytochemical, cytogenetic, and immunological findings. Blood 64:237–243

    PubMed  CAS  Google Scholar 

  10. Dohner K, Tobis K, Ulrich R, Frohling S, Benner A, Schlenk RF, Dohner H (2002) Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the acute myeloid leukemia study group Ulm. J Clin Oncol 20:3254–3261

    Article  PubMed  CAS  Google Scholar 

  11. Roumier C, Eclache V, Imbert M, Davi F, MacIntyre E, Garand R, Talmant P, Lepelley P, Lai JL, Casasnovas O, Maynadie M, Mugneret F, Bilhou-Naberra C, Valensi F, Radford I, Mozziconacci MJ, Arnoulet C, Duchayne E, Dastugue N, Cornillet P, Daliphard S, Garnache F, Boudjerra N, Jouault H, Fenneteau O, Pedron B, Berger R, Flandrin G, Fenaux P, Preudhomme C, Groupe Francais de Cytogenetique Hematologique (GFCH), Groupe Francais d’Hematologie Cellulaire (GFHC) (2005) Acute megakaryoblastic leukaemia: a national clinical and biological study of 53 adult and childhood cases by the Groupe Francais d’Hematologie Cellulaire (GFHC). Leuk Lymphoma 44(11):49–58

    Google Scholar 

  12. Farag SS, Archer KJ, Mrozek K, Vardiman JW, Carroll AJ, Pettenati MJ, Moore JO, Kolitz JE, Mayer RJ, Stone RM, Larson RA, Bloomfield CD (2002) Isolated trisomy of chromosomes 8, 11, 13 and 21 is an adverse prognostic factor in adults with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Int J Oncol 21:1041–1051

    PubMed  CAS  Google Scholar 

  13. Grimwade D, Lo Coco F (2002) Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia 16:1959–1973

    Article  PubMed  CAS  Google Scholar 

  14. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, Goldstone A (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood 92:2322–2333

    PubMed  CAS  Google Scholar 

  15. Gupta V, Minden MD, Yi QL, Brandwein J, Chun K (2003) Prognostic significance of trisomy 4 as the sole cytogenetic abnormality in acute myeloid leukemia. Leuk Res 27:983–991

    Article  PubMed  CAS  Google Scholar 

  16. Haferlach T, Bennett JM, Loffler H, Gassmann W, Andersen JW, Tuzuner N, Casslleth PA, Fonatsch C, Schoch C, Schlegelberger B, Becher R, Thiel E, Ludwig WD, Sauerland MC, Heinecke A, Buchner T (1996) Acute myeloid leukemia with translocation (8;21). Cytomorphology, dysplasia and prognostic factors in 41 cases. Leuk Lymphoma 23:227–234

    Article  PubMed  CAS  Google Scholar 

  17. Haferlach T, Kern W, Schoch C, Hiddemann W, Sauerland MC (2003) Morphologic dysplasia in acute myeloid leukemia: importance of granulocytic dysplasia—reply. J Clin Oncol 21:3004–3005

    Article  PubMed  Google Scholar 

  18. Haferlach T, Schoch C, Schnittger S, Kern W, Loffler H, Hiddemann W (2002) Distinct genetic patterns can be identified in acute monoblastic and acute monocytic leukaemia (FAB AML M5a and M5b): a study of 124 patients. Br J Haematol 118:426–431

    Article  PubMed  CAS  Google Scholar 

  19. Haferlach T, Winkemann M, Loffler H, Schoch R, Gassmann W, Fonatsch C, Schoch C, Poetsch M, Weber Matthiesen K, Schlegelberger B (1996) The abnormal eosinophils are part of the leukemic cell population in acute myelomonocytic leukemia with abnormal eosinophils (AML M4Eo) and carry the pericentric inversion 16: a combination of May–Grunwald–Giemsa staining and fluorescence in situ hybridization. Blood 87:2459–2463

    PubMed  CAS  Google Scholar 

  20. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA, Bloomfield CD (1999) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997. J Clin Oncol 17:3835–3849

    PubMed  CAS  Google Scholar 

  21. Heinonen K, Mrozek K, Lawrence D, Arthur DC, Pettenati MJ, Stamberg J, Qumsiyeh MB, Verma RS, MacCallum J, Schiffer CA, Bloomfield CD (1998) Clinical characteristics of patients with de novo acute myeloid leukaemia and isolated trisomy 11: a Cancer and Leukemia Group B study. Br J Haematol 101:513–520

    Article  PubMed  CAS  Google Scholar 

  22. Jaffe E, Lee Harris (2001) Tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon

    Google Scholar 

  23. Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T (2004) Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood 104:3078–3085

    Article  PubMed  CAS  Google Scholar 

  24. Kern W, Voskova D, Schoch C, Schnittger S, Hiddemann W, Haferlach T (2004) Prognostic impact of early response to induction therapy as assessed by multiparameter flow cytometry in acute myeloid leukemia. Haematologica 89:528–540

    PubMed  Google Scholar 

  25. Klaus M, Haferlach T, Schnittger S, Kern W, Hiddemann W, Schoch C (2004) Cytogenetic profile in de novo acute myeloid leukemia with FAB subtypes M0, M1, and M2: a study based on 652 cases analyzed with morphology, cytogenetics, and fluorescence in situ hybridization. Cancer Genet Cytogenet 155:47–56

    Article  PubMed  CAS  Google Scholar 

  26. Lion T, Haas OA, Harbott J, Bannier E, Ritterbach J, Jankovic M, Fink FM, Stojimirovic A, Herrmann J, Riehm HJ, Lampert F, Ritter J, Koch H, Gadner H (1992) The translocation T(1 22)(P13 Q13) is a nonrandom marker specifically associated with acute megakaryocytic leukemia in young children. Blood 79:3325–3330

    PubMed  CAS  Google Scholar 

  27. Loeffler H, Raststetter J, Haferlach T (2005) Atlas of clinical hematology, 6th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  28. Marcucci G, Mrozek K, Ruppert AS, Archer KJ, Pettenati MJ, Heerema NA, Carroll AJ, Koduru PRK, Kolitz JE, Sterling LJ, Edwards CG, Anastasi J, Larson RA, Bloomfield CD (2004) Abnormal cytogenetics at date of morphologic complete remission predicts short overall and disease-free survival, and higher relapse rate in adult acute myeloid leukemia: results from cancer and leukemia group B study 8461. J Clin Oncol 22:2410–2418

    Article  PubMed  Google Scholar 

  29. Mauritzson N, Johansson B, Albin M, Billstrom R, Ahlgren T, Mikoczy Z, Nilsson PG, Hagmar L, Mitelman F (1999) A single-center population-based consecutive series of 1500 cytogenetically investigated adult hematological malignancies: karyotypic features in relation to morphology, age and gender. Eur J Haematol 62:95–102

    Article  PubMed  CAS  Google Scholar 

  30. Mehta AB, Bain BJ, Fitchett M, Shah S, Secker-Walker LM (1998) Trisomy 13 and myeloid malignancy—characteristic blast cell morphology: a United Kingdom cancer cytogenetics group survey. Br J Haematol 101:749–752

    Article  PubMed  CAS  Google Scholar 

  31. Mitelman F (1995) An international system for human cytogenetic nomenclature. Karger

  32. Moorman AV, Roman E, Willett EV, Dovey GJ, Cartwright RA, Morgan GJ (2001) Karyotype and age in acute myeloid leukemia. Are they linked? Cancer Genet Cytogenet 126(2):155–161

    Article  PubMed  CAS  Google Scholar 

  33. Mrozek K, Heinonen K, delaChapelle A, Bloomfield CD (1997) Clinical significance of cytogenetics in acute myeloid leukemia. Semin Oncol 24:17–31

    PubMed  CAS  Google Scholar 

  34. Olopade OI, Thangavelu M, Larson RA, Mick R, Kowalvern A, Schumacher HR, Lebeau MM, Vardiman JW, Rowley JD (1992) Clinical, morphologic, and cytogenetic characteristics of 26 patients with acute erythroblastic leukemia. Blood 80:2873–2882

    PubMed  CAS  Google Scholar 

  35. Roumier C, Eclache V, Imbert M, Davi F, Macintyre E, Garand R, Talmant P, Lepelley P, Lai JL, Casasnovas O, Maynadie M, Mugneret F, Bilhou-Naberra C, Valensi F, Radford I, Mozziconacci MJ, Arnoulet C, Duchayne E, Dastugue N, Cornillet P, Daliphard S, Garnache F, Boudjerra N, Jouault H, Fenneteau O, Pedron B, Berger R, Flandrin G, Fenaux P, Preudhomme C (2003) M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Francais d’Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood 101:1277–1283

    Article  PubMed  CAS  Google Scholar 

  36. San Miguel JF, Vidriales MB, Lopez-Berges C, Diaz-Mediavilla J, Gutierrez N, Canizo C, Ramos F, Calmuntia MJ, Perez JJ, Gonzalez M, Orfao A (2001) Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood 98:1746–1751

    Article  PubMed  CAS  Google Scholar 

  37. Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T, Buchner T, Wormann B, Hiddemann W, Griesinger F (2000) Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 14:796–804

    Article  PubMed  CAS  Google Scholar 

  38. Schnittger S, Weisser M, Schoch C, Hiddemann W, Haferlach T, Kern W (2003) New score predicting for prognosis in PML–RARA(+), AML1–ETO+, or CBFB-MYH11(+) acute myeloid leukemia based on quantification of fusion transcripts. Blood 102:2746–2755

    Article  PubMed  CAS  Google Scholar 

  39. Schoch C, Kern W, Kohlmann A, Hiddemann W, Schnittger S, Haferlach T (2005) Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalances and a specific gene expression profile. Genes Chromosomes Cancer 43(3):227–238

    Article  PubMed  CAS  Google Scholar 

  40. Schoch C, Haferlach T, Bursch S, Kern W, Loeffler H, Hiddemann W (2000) Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH. Genes Chromosomes Cancer 35(1):20–29

    Article  Google Scholar 

  41. Schoch C, Haase D, Fonatsch C, Haferlach T, Loffler H, Schlegelberger B, Hossfeld DK, Becher R, Sauerland MC, Heinecke A, Wormann B, Buchner T, Hiddemann W (1997) The significance of trisomy 8 in de novo acute myeloid leukaemia: the accompanying chromosome aberrations determine the prognosis. Br J Haematol 99:605–611

    Article  PubMed  CAS  Google Scholar 

  42. Schoch C, Haferlach T (2002) Cytogenetics in acute myeloid leukemia. Curr Oncol Rep 4:390–397

    Article  PubMed  Google Scholar 

  43. Schoch C, Haferlach T, Haase D, Fonatsch C, Loffler H, Schlegelberger B, Staib P, Sauerland MC, Heinecke A, Buchner T, Hiddemann W (2001) Patients with de novo acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: a study of 90 patients. Br J Haematol 112:118–126

    Article  PubMed  CAS  Google Scholar 

  44. Schoch C, Kern W, Schnittger S, Buchner T, Hiddemann W, Haferlach T (2004) The influence of age on prognosis of de novo acute myeloid leukemia differs according to cytogenetic subgroups. Haematologica 89:1082–1090

    PubMed  Google Scholar 

  45. Schoch C, Schnittger S, Klaus M, Kern W, Hiddemann W, Haferlach T (2003) AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 102:2395–2402

    Article  PubMed  CAS  Google Scholar 

  46. Swansbury GJ, Lawler SD, Alimena G, Arthur D, Berger R, Van den Berghe H, Bloomfield CD, de la Chappelle A, Dewald G, Garson OM et al (1994) Long-term survival in acute myelogenous leukemia: a second follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer Genet Cytogenet 73(1):1–7

    Article  PubMed  CAS  Google Scholar 

  47. Venditti A, DelPoeta G, Buccisano F, Tamburini A, Cox MC, Stasi R, Bruno A, Aronica G, Maffei L, Suppo G, Simone MD, Forte L, Cordero V, Postorino M, Tufilli V, Isacchi G, Masi M, Papa G, Amadori S (1997) Minimally differentiated acute myeloid leukemia (AML-MO): comparison of 25 cases with other French–American–British subtypes. Blood 89:621–629

    PubMed  CAS  Google Scholar 

  48. Wolman SR, Gundacker H, Appelbaum FR, Slovak ML (2002) Impact of trisomy 8 (+8) on clinical presentation, treatment response, and survival in acute myeloid leukemia: a Southwest Oncology Group study. Blood 100:29–35

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Bacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacher, U., Kern, W., Schnittger, S. et al. Further correlations of morphology according to FAB and WHO classification to cytogenetics in de novo acute myeloid leukemia: a study on 2,235 patients. Ann Hematol 84, 785–791 (2005). https://doi.org/10.1007/s00277-005-1099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-005-1099-0

Keywords

Navigation