Skip to main content
Log in

Wavelength-shifting molecular beacons

  • Article
  • Published:

From Nature Biotechnology

View current issue Submit your manuscript

Abstract

We describe wavelength-shifting molecular beacons, which are nucleic acid hybridization probes that fluoresce in a variety of different colors, yet are excited by a common monochromatic light source. The twin functions of absorption of energy from the excitation light and emission of that energy in the form of fluorescent light are assigned to two separate fluorophores in the same probe. These probes contain a harvester fluorophore that absorbs strongly in the wavelength range of the monochromatic light source, an emitter fluorophore of the desired emission color, and a nonfluorescent quencher. In the absence of complementary nucleic acid targets, the probes are dark, whereas in the presence of targets, they fluoresce—not in the emission range of the harvester fluorophore that absorbs the light, but rather in the emission range of the emitter fluorophore. This shift in emission spectrum is due to the transfer of the absorbed energy from the harvester fluorophore to the emitter fluorophore by fluorescence resonance energy transfer, and it only takes place in probes that are bound to targets. Wavelength-shifting molecular beacons are substantially brighter than conventional molecular beacons that contain a fluorophore that cannot efficiently absorb energy from the available monochromatic light source. We describe the spectral characteristics of wavelength-shifting molecular beacons, and we demonstrate how their use improves and simplifies multiplex genetic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Principle of operation of wavelength-shifting molecular beacons.
Figure 2
Figure 3: Enhancement in the brightness of molecular beacons.
Figure 4: Multiplex detection of the products of PCRs containing conventional molecular beacons and wavelength-shifting molecular beacons.

Similar content being viewed by others

References

  1. Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996).

    Article  CAS  Google Scholar 

  2. Tyagi, S., Bratu, D.P. & Kramer, F.R. Multicolor molecular beacons for allele discrimination . Nat. Biotechnol. 16, 49– 53 (1998).

    Article  CAS  Google Scholar 

  3. Matsuo, T. In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochim. Biophys. Acta 1379, 178–184 (1998).

    Article  CAS  Google Scholar 

  4. Sokol, D.L., Zhang, X., Lu, P. & Gewirtz, A.M. Real time detection of DNA●RNA hybridization in living cells. Proc. Natl. Acad. Sci. USA 95, 11538–11543 (1998).

    Article  CAS  Google Scholar 

  5. Leone, G., van Schijndel, H., van Gemen, B., Kramer, F.R. & Schoen, C.D. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res. 26, 2150– 2155 (1998).

    Article  CAS  Google Scholar 

  6. Steemers, F.J., Ferguson, J.A. & Walt, D.R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat. Biotechnol. 18, 91–94 (2000).

    Article  CAS  Google Scholar 

  7. Kostrikis, L.G., Tyagi, S., Mhlanga, M.M., Ho, D.D. & Kramer, F.R. Spectral genotyping of human alleles . Science 279, 1228–1229 (1998).

    Article  CAS  Google Scholar 

  8. Kostrikis, L.G. et al. A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nat. Med. 4, 350–353 (1998).

    Article  CAS  Google Scholar 

  9. Giesendorf, B.A.J. et al. Molecular beacons: a new approach for semi-automated mutation analysis. Clin. Chem. 44, 482– 486 (1998).

    CAS  PubMed  Google Scholar 

  10. Marras, S.A.E., Kramer, F.R. & Tyagi, S. Multiplex detection of single-nucleotide variations using molecular beacons. Genet. Anal. 14 , 151–156 (1999).

    Article  CAS  Google Scholar 

  11. Piatek, A.S. et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat. Biotechnol. 16, 359–363 (1998).

    Article  CAS  Google Scholar 

  12. Vet, J.A.M. et al. Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc. Natl. Acad. Sci. USA 96, 6394–6399 (1999).

    Article  CAS  Google Scholar 

  13. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 ( 1978).

    Article  CAS  Google Scholar 

  14. Heid, C.A., Stevens, J., Livak, K.J. & Williams, P.M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  Google Scholar 

  15. Wittwer, C., Herrmann, M.G., Moss, A.A. & Rasmussen, R.P. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22, 134–138 (1997).

    Google Scholar 

  16. Belgrader, P. et al. PCR detection of bacteria in seven minutes. Science 284, 449–450 ( 1999).

    Article  CAS  Google Scholar 

  17. Ju, J., Ruan, C., Fuller, C.W., Glazer, A.N. & Mathies, R.A. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc. Natl. Acad. Sci. USA 92, 4347–4351 ( 1995).

    Article  CAS  Google Scholar 

  18. Hung, S.C., Mathies, R.A. & Glazer, A.N. Optimization of spectroscopic and electrophoretic properties of energy transfer primers. Anal. Biochem. 252, 78–88 (1997).

    Article  CAS  Google Scholar 

  19. Mummidi, S., Ahuja, S.S., McDaniel, B.L. & Ahuja, S.K. The human CC chemokine receptor 5 (CCR5) gene. Multiple transcripts with 5′-end heterogeneity, dual promoter usage, and evidence for polymorphisms within the regulatory regions and noncoding exons. J. Biol. Chem. 272, 30662–30671 (1997).

    Article  CAS  Google Scholar 

  20. Gonzalez, E. et al. Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc. Natl. Acad. Sci. USA 96, 12004–12009 (1999).

    Article  CAS  Google Scholar 

  21. Lee, L.G. et al. New energy transfer dyes for DNA sequencing. Nucleic Acids Res. 25, 2816–2822 (1997).

    Article  CAS  Google Scholar 

  22. Hung, S.C., Ju, J., Mathies, R.A. & Glazer, A.N. Cyanine dyes with high absorption cross section as donor chromophores in energy transfer primers. Anal. Biochem. 243, 15– 27 (1996).

    Article  CAS  Google Scholar 

  23. Kramer, F.R. et al. Molecular beacons: hybridization probes for the detection of nucleic acids in homogeneous solutions (www.molecular-beacons.org).

  24. Higuchi, R., Krummel, B. & Saiki, R.K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein DNA interactions. Nucleic Acids Res. 16, 7351–7367 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants HL-43521 and ES-10536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, S., Marras, S. & Kramer, F. Wavelength-shifting molecular beacons. Nat Biotechnol 18, 1191–1196 (2000). https://doi.org/10.1038/81192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81192

  • Springer Nature America, Inc.

This article is cited by

Navigation