Skip to main content

Molecular Aptamer Beacons

  • Chapter
  • First Online:
Molecular Beacons

Abstract

In this chapter, we present a special class of nucleic acid probes, called molecular aptamer beacons, which combine the specific recognition of aptamers and the signal transduction of molecular beacons. By using SELEX process, single-stranded aptamers can be selected to bind essentially any targets ranging from ions, small molecules, peptides, proteins, virus, and even whole cells. Aptamers have gained increasing attention in the field of molecular recognition, design of biosensors, and investigation of RNAs in living cells due to their good selectivity, high affinity, convenient synthesis, and easy modification. There are different designs of molecular aptamer beacons, such as replacing the loop part of molecular beacons into a target-specific sequence, splitting an aptamer into two subunits that reconstructed in the presence of target molecules, and structure-switching molecular beacons. In addition, we also present detailed discussion on the molecular aptamer beacons developed for fluorescent, electrochemical, and optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308

    Article  CAS  Google Scholar 

  2. Tyagi S, Bratu DP, Kramer FR (1998) Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16(1):49–53

    Article  CAS  Google Scholar 

  3. Tyagi S, Marras SAE, Kramer FR (2000) Wavelength-shifting molecular beacons. Nat Biotechnol 18(11):1191–1196

    Article  CAS  Google Scholar 

  4. Zhang P, Beck T, Tan W (2001) Design of a molecular beacon DNA probe with two fluorophores. Angew Chem Int Ed 40(2):402–405

    Article  CAS  Google Scholar 

  5. Fang X, Liu X, Schuster S, Tan W (1999) Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. J Am Chem Soc 121(12):2921–2922

    Article  CAS  Google Scholar 

  6. Li J, Tan W, Wang K, Xiao D, Yang X, He X, Tang Z (2001) Ultrasensitive optical DNA biosensor based on surface immobilization of molecular beacon by a bridge structure. Anal Sci 17(10):1149–1153

    Article  CAS  Google Scholar 

  7. Fang X, Li JJ, Tan W (2000) Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Anal Chem 72(14):3280–3285

    Article  CAS  Google Scholar 

  8. Li JJ, Fang X, Schuster SM, Tan W (2000) Molecular beacons: a novel approach to detect protein – DNA interactions. Angew Chem Int Ed 39(6):1049–1052

    Article  CAS  Google Scholar 

  9. Tan W, Fang X, Li J, Liu X (2000) Molecular beacons: a novel DNA probe for nucleic acid and protein studies. Chem Eur J 6(7):1107–1111

    Article  CAS  Google Scholar 

  10. Li JJ, Fang X, Tan W (2002) Molecular aptamer beacons for real-time protein recognition. Biochem Biophys Res Commun 292(1):31–40

    Article  CAS  Google Scholar 

  11. Cao Z, Suljak SW, Tan W (2005) Molecular beacon aptamers for protein monitoring in real-time and in homogeneous solutions. Curr Proteomics 2:31–40

    Article  CAS  Google Scholar 

  12. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998

    Article  CAS  Google Scholar 

  13. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  14. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344(6265):467–468

    Article  CAS  Google Scholar 

  15. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  16. Rajendran M, Ellington AD (2003) In vitro selection of molecular beacons. Nucleic Acids Res 31(19):5700–5713

    Article  CAS  Google Scholar 

  17. Ueyama H, Takagi M, Takenaka S (2002) A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet − potassium ion complex formation. J Am Chem Soc 124(48):14286–14287

    Article  CAS  Google Scholar 

  18. Stojanovic MN, de Prada P, Landry DW (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123(21):4928–4931

    Article  CAS  Google Scholar 

  19. Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294(2):126–131

    Article  CAS  Google Scholar 

  20. Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan W (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci USA 102(48):17278–17283

    Article  CAS  Google Scholar 

  21. Stojanovic MN, de Prada P, Landry DW (2000) Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc 122(46):11547–11548

    Article  CAS  Google Scholar 

  22. Lin Z, Chen L, Zhu X, Qiu B, Chen G (2010) Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments. Chem Commun (Camb) 46(30):5563–5565

    Article  CAS  Google Scholar 

  23. Freeman R, Li Y, Tel-Vered R, Sharon E, Elbaz J, Willner I (2009) Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst 134(4):653–656

    Article  CAS  Google Scholar 

  24. Wu C, Yan L, Wang C, Lin H, Wang C, Chen X, Yang CJ (2010) A general excimer signaling approach for aptamer sensors. Biosens Bioelectron 25(10):2232–2237

    Article  CAS  Google Scholar 

  25. Nguyen T-H, Steinbock LJ, H-Jr B, Helm M, Rd B (2011) Measuring single small molecule binding via rupture forces of a split aptamer. J Am Chem Soc 133(7):2025–2027

    Article  CAS  Google Scholar 

  26. Nutiu R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125(16):4771–4778

    Article  CAS  Google Scholar 

  27. Nutiu R, Li Y (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chem Eur J 10(8):1868–1876

    Article  CAS  Google Scholar 

  28. Nutiu R, Li Y (2005) In vitro selection of structure-switching signaling aptamers. Angew Chem Int Ed 44(7):1061–1065

    Article  CAS  Google Scholar 

  29. Li N, Ho C-M (2008) Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc 130(8):2380–2381

    Article  CAS  Google Scholar 

  30. Sparano BA, Koide K (2005) A strategy for the development of small-molecule-based sensors that strongly fluoresce when bound to a specific RNA. J Am Chem Soc 127(43):14954–14955

    Article  CAS  Google Scholar 

  31. Wu C, Wang C, Yan L, Yang CJ (2009) Pyrene excimer nucleic acid probes for biomolecule signaling. J Biomed Nanotechnol 5(5):495–504

    Article  CAS  Google Scholar 

  32. Wang X-L, Li F, Su Y-H, Sun X, Li X-B, Schluesener HJ, Tang F, Xu S-Q (2004) Ultrasensitive detection of protein using an aptamer-based exonuclease protection assay. Anal Chem 76(19):5605–5610

    Article  CAS  Google Scholar 

  33. Heyduk E, Heyduk T (2005) Nucleic acid-based fluorescence sensors for detecting proteins. Anal Chem 77(4):1147–1156

    Article  CAS  Google Scholar 

  34. Katilius E, Katiliene Z, Woodbury NW (2006) Signaling aptamers created using fluorescent nucleotide analogues. Anal Chem 78(18):6484–6489

    Article  CAS  Google Scholar 

  35. Wu Z-S, Zhang S, Zhou H, Shen G-L, Yu R (2010) Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification. Anal Chem 82(6):2221–2227

    Article  CAS  Google Scholar 

  36. Ding C, Li X, Ge Y, Zhang S (2010) Fluorescence detection of telomerase activity in cancer cells based on isothermal circular strand-displacement polymerization reaction. Anal Chem 82(7):2850–2855

    Article  CAS  Google Scholar 

  37. Zhang X-B, Wang Z, Xing H, Xiang Y, Lu Y (2010) Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity. Anal Chem 82(12):5005–5011

    Article  CAS  Google Scholar 

  38. Cong X, Nilsen-Hamilton M (2005) Allosteric aptamers: targeted reversibly attenuated probes†. Biochemistry 44(22):7945–7954

    Article  CAS  Google Scholar 

  39. Fang X, Sen A, Vicens M, Tan W (2003) Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. Chembiochem 4(9):829–834

    Article  CAS  Google Scholar 

  40. Vicens MC, Sen A, Vanderlaan A, Drake TJ, Tan W (2005) Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection. Chembiochem 6(5):900–907

    Article  CAS  Google Scholar 

  41. Wu Z-S, Hu P, Zhou H, Shen G, Yu R (2010) Fluorescent oligonucleotide probe based on G-quadruplex scaffold for signal-on ultrasensitive protein assay. Biomaterials 31(7):1918–1924

    Article  CAS  Google Scholar 

  42. Tang D, Liao D, Zhu Q, Wang F, Jiao H, Zhang Y, Yu C (2011) Fluorescence turn-on detection of a protein through the displaced single-stranded DNA binding protein binding to a molecular beacon. Chem Commun (Camb) 47(19):5485–5487

    Article  CAS  Google Scholar 

  43. Cao Z, Tan W (2005) Molecular aptamers for real-time protein–protein interaction study. Chem Eur J 11(15):4502–4508

    Article  CAS  Google Scholar 

  44. Tang Z, Mallikaratchy P, Yang R, Kim Y, Zhu Z, Wang H, Tan W (2008) Aptamer switch probe based on intramolecular displacement. J Am Chem Soc 130(34):11268–11269

    Article  CAS  Google Scholar 

  45. Kolpashchikov DM (2005) Binary malachite green aptamer for fluorescent detection of nucleic acids. J Am Chem Soc 127(36):12442–12443

    Article  CAS  Google Scholar 

  46. Wang W, Chen C, Qian MX, Zhao XS (2008) Aptamer biosensor for protein detection based on guanine-quenching. Sensors Actuators B-Chem 129(1):211–217

    Article  CAS  Google Scholar 

  47. Tok J, Lai J, Leung T, Li SFY (2010) Molecular aptamer beacon for myotonic dystrophy kinase-related Cdc42-binding kinase [alpha]. Talanta 81(1–2):732–736

    Article  CAS  Google Scholar 

  48. Zhang Z, Guo L, Tang J, Guo X, Xie J (2009) An aptameric molecular beacon-based “Signal-on” approach for rapid determination of rHuEPO-[alpha]. Talanta 80(2):985–990

    Article  CAS  Google Scholar 

  49. Odenthal KJ, Gooding JJ (2007) An introduction to electrochemical DNA biosensors. Analyst 132(7):603–610

    Article  CAS  Google Scholar 

  50. Lee T (2008) Over-the-counter biosensors: past, present, and future. Sensors-basel 8(9):5535–5559

    Article  CAS  Google Scholar 

  51. Mendes PM (2008) Stimuli-responsive surfaces for bio-applications. Chem Soc Rev 37(11):2512–2529

    Article  CAS  Google Scholar 

  52. Privett BJ, Shin JH, Schoenfisch MH (2008) Electrochemical sensors. Anal Chem 80(12):4499–4517

    Article  CAS  Google Scholar 

  53. Lubin AA, Lai RY, Baker BR, Heeger AJ, Plaxco KW (2006) Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Anal Chem 78(16):5671–5677

    Article  CAS  Google Scholar 

  54. Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA 100(16):9134–9137

    Article  CAS  Google Scholar 

  55. Immoos CE, Lee SJ, Grinstaff MW (2004) DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. J Am Chem Soc 126(35):10814–10815

    Article  CAS  Google Scholar 

  56. Radi A-E, Acero Sánchez JL, Baldrich E, O’Sullivan CK (2005) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128(1):117–124

    Article  Google Scholar 

  57. Xiao Y, Lubin AA, Baker BR, Plaxco KW, Heeger AJ (2006) Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proc Natl Acad Sci USA 103(45):16677–16680

    Article  CAS  Google Scholar 

  58. Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed 44(34):5456–5459

    Article  CAS  Google Scholar 

  59. Bang GS, Cho S, Kim B-G (2005) A novel electrochemical detection method for aptamer biosensors. Biosens Bioelectron 21(6):863–870

    Article  CAS  Google Scholar 

  60. Xiao Y, Piorek BD, Plaxco KW, Heeger AJ (2005) A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J Am Chem Soc 127(51):17990–17991

    Article  CAS  Google Scholar 

  61. Cheng G, Shen B, Zhang F, Wu J, Xu Y, He P, Fang Y (2010) A new electrochemically active-inactive switching aptamer molecular beacon to detect thrombin directly in solution. Biosens Bioelectron 25(10):2265–2269

    Article  CAS  Google Scholar 

  62. Lai RY, Plaxco KW, Heeger AJ (2006) Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem 79(1):229–233

    Article  Google Scholar 

  63. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128(10):3138–3139

    Article  CAS  Google Scholar 

  64. Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C (2007) A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc 129(5):1042–1043

    Article  CAS  Google Scholar 

  65. Ferapontova EE, Olsen EM, Gothelf KV (2008) An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J Am Chem Soc 130(13):4256–4258

    Article  CAS  Google Scholar 

  66. Xiao Y, Rowe AA, Plaxco KW (2006) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc 129(2):262–263

    Article  Google Scholar 

  67. Peng Y, Wang X, Xiao Y, Feng L, Zhao C, Ren J, Qu X (2009) i-Motif quadruplex DNA-based biosensor for distinguishing single- and multiwalled carbon nanotubes. J Am Chem Soc 131(38):13813–13818

    Article  CAS  Google Scholar 

  68. Swensen JS, Xiao Y, Ferguson BS, Lubin AA, Lai RY, Heeger AJ, Plaxco KW, Soh HT (2009) Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J Am Chem Soc 131(12):4262–4266

    Article  CAS  Google Scholar 

  69. Wang L, Liu X, Hu X, Song S, Fan C (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun (Camb) 36:3780–3782

    Article  Google Scholar 

  70. Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19(22):3943–3946

    Article  CAS  Google Scholar 

  71. Zhang J, Wang L, Pan D, Song S, Boey FYC, Zhang H, Fan C (2008) Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4(8):1196–1200

    Article  CAS  Google Scholar 

  72. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    Article  CAS  Google Scholar 

  73. Song S, Liang Z, Zhang J, Wang L, Li G, Fan C (2009) Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed 121(46):8826–8830

    Article  Google Scholar 

  74. Zhang J, Wang L, Zhang H, Boey F, Song S, Fan C (2010) Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small 6(2):201–204

    Article  CAS  Google Scholar 

  75. Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124(33):9678–9679

    Article  CAS  Google Scholar 

  76. Wang L, Zhang J, Wang X, Huang Q, Pan D, Song S, Fan C (2008) Gold nanoparticle based optical probes for target-responsive DNA structures. Gold Bull 41(1):37–41

    Article  Google Scholar 

  77. Liu X, Tang Y, Wang L, Zhang J, Song S, Fan C, Wang S (2007) Optical detection of mercury(II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides. Adv Mater 19(13):1662–1662

    Article  Google Scholar 

  78. Liu J, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45(1):90–94

    Article  CAS  Google Scholar 

  79. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed 43(33):4300–4302

    Article  CAS  Google Scholar 

  80. Tanaka Y, Oda S, Yamaguchi H, Kondo Y, Kojima C, Ono A (2006) 15N–15N J-coupling across HgII: direct observation of HgII-mediated T–T base pairs in a DNA duplex. J Am Chem Soc 129(2):244–245

    Article  Google Scholar 

  81. Lee J-S, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46(22):4093–4096

    Article  CAS  Google Scholar 

  82. Xue X, Wang F, Liu X (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130(11):3244–3245

    Article  CAS  Google Scholar 

  83. Huang C-C, Huang Y-F, Cao Z, Tan W, Chang H-T (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77(17):5735–5741

    Article  CAS  Google Scholar 

  84. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126(38):11768–11769

    Article  CAS  Google Scholar 

  85. Lu N, Shao C, Deng Z (2008) Rational design of an optical adenosine sensor by conjugating a DNA aptamer with split DNAzyme halves. Chem Commun (Camb) 46:6161–6163

    Article  Google Scholar 

  86. Teller C, Shimron S, Willner I (2009) Aptamer − DNAzyme hairpins for amplified biosensing. Anal Chem 81(21):9114–9119

    Article  CAS  Google Scholar 

  87. Li JJ, Geyer R, Tan W (2000) Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Res 28(11):e52

    Article  CAS  Google Scholar 

  88. Tang Z, Wang K, Tan W, Li J, Liu L, Guo Q, Meng X, Ma C, Huang S (2003) Real‐time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acids Res 31(23):e148

    Article  Google Scholar 

  89. Tang Z, Wang K, Tan W, Ma C, Li J, Liu L, Guo Q, Meng X (2003) Real-time investigation of nucleic acids phosphorylation process using molecular beacons. Nucleic Acids Res 33(11):e97

    Article  Google Scholar 

  90. Bratu DP, Cha B-J, Mhlanga MM, Kramer FR, Tyagi S (2003) Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci USA 100(23):13308–13313

    Article  CAS  Google Scholar 

  91. Medley CD, Drake TJ, Tomasini JM, Rogers RJ, Tan W (2005) Simultaneous monitoring of the expression of multiple genes inside of single breast carcinoma cells. Anal Chem 77(15):4713–4718

    Article  CAS  Google Scholar 

  92. Mhlanga MM, Vargas DY, Fung CW, Kramer FR, Tyagi S (2005) tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Res 33(6):1902–1912

    Article  CAS  Google Scholar 

  93. Liu X, Tan W (1999) A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Anal Chem 71(22):5054–5059

    Article  CAS  Google Scholar 

  94. Steemers FJ, Ferguson JA, Walt DR (2000) Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat Biotechnol 18(1):91–94

    Article  CAS  Google Scholar 

  95. Tang Z, Zhu Z, Mallikaratchy P, Yang R, Sefah K, Tan W (2010) Aptamer–target binding triggered molecular mediation of singlet oxygen generation. Asian J Chem 5(4):783–786

    Article  CAS  Google Scholar 

  96. Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130(33):10856–10857

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuichen Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, C., Yang, C.J., Tan, W. (2013). Molecular Aptamer Beacons. In: Yang, C., Tan, W. (eds) Molecular Beacons. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39109-5_11

Download citation

Publish with us

Policies and ethics