Skip to main content
Log in

Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DOPAMINERGIC neuronal pathways arise from mesencephalic nuclei and project axons to the striatum, cortex, limbic system and hypothalamus1,2. Through these pathways dopamine affects many physiological functions, such as the control of coordinated movement and hormone secretion3. Here we have studied the physiological involvement of the dopamine D2 receptors in dopaminergic transmission, using homologous recombination to generate D2-receptor-deficient mice. Absence of D2 receptors leads to animals that are akinetic and bradykinetic in behavioural tests, and which show significantly reduced spontaneous movements. This pheno-type presents analogies with symptoms characteristic of Parkin-son's disease4,5. Our study shows that D2 receptors have a key role in the dopaminergic control of nervous function. These mice have therapeutic potential as a model for investigating and correcting dysfunctions of the dopaminergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graybiel, A. M., Trends Neurosci. 13, 244–254 (1990).

    Article  CAS  Google Scholar 

  2. Alexander, G. A. & Crutcher, M. D. Trends Neurosci. 13, 266–271 (1990).

    Article  CAS  Google Scholar 

  3. Jackson, D. M. & Westlind-Danielsson, A. Pharmac. Ther. 64, 291–369 (1994).

    Article  CAS  Google Scholar 

  4. Hornykiewicz, O. Pharmac. Rev. 18, 925–964 (1966).

    CAS  Google Scholar 

  5. Seeman, P. & Niznik, H. B. FASEB J. 4, 2737–2744 (1990).

    Article  CAS  Google Scholar 

  6. Adra, C. N., Boer, P. H. & McBurney, M. W. Gene 60, 65–74 (1987).

    Article  CAS  Google Scholar 

  7. Lévesque, D. et al. Proc. natn. Acad. Sci. U.S.A. 89, 8155–8159 (1992).

    Article  ADS  Google Scholar 

  8. Zurawski, G. et al. Science 232, 772–775 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Bannon, M. J. et al. J. biol. Chem. 261, 6640–6642 (1986).

    CAS  PubMed  Google Scholar 

  10. Civelli, O., Douglass, J., Goldstein, A. & Herbert, E. Proc. natn. Acad. Sci. U.S.A. 82, 4291–4295 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Kaufman, D. L., McGinnis, J. F., Krieger, N. R. & Tobin, A. J. Science 232, 1138–1140 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Grima, B., Lamouroux, A., Blanot, F., Biguet, N. F. & Mallet, J. Proc. natn. Acad. Sci. U.S.A. 82, 617–621 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Le Moine, C., Normand, E. & Bloch, B. Proc. natn. Acad. Sci. U.S.A. 88, 4205–4209 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Kita, H. & Kitai, S. T. Brain Res. 447, 346–352 (1988).

    Article  CAS  Google Scholar 

  15. Gerfen, C. R. et al. Science 250, 1429–1432 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Fuxe, K., Hökfelt, T. & Nilsson, O. Neuroendocrinology 5, 5–15 (1987).

    Google Scholar 

  17. Janssen, P. A. J., Jageneau, A. H. & Schellekens, K. H. L. Psychopharmacologia 1, 389–392 (1960).

    Article  CAS  Google Scholar 

  18. Pertwee, R. G. Br. J. Pharmac. 46, 753–763 (1972).

    Article  CAS  Google Scholar 

  19. Wolffgramm, J., Rommelspacher, H. & Buck, E. Pharmac. Biochem. Behav. 36, 907–914 (1990).

    Article  CAS  Google Scholar 

  20. Xu, M. et al. Cell 79, 729–742 (1994).

    Article  CAS  Google Scholar 

  21. Gingrich, J. A. & Caron, M. G. A. Rev. Neurosci. 16, 299–321 (1993).

    Article  CAS  Google Scholar 

  22. Drago, J. et al. Proc. natn. Acad. Sci. U.S.A. 91, 12564–12568 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Meyer, M. E., Cottrell, G. A. & Van Hartesveldt, C. Pharmac. Biochem. Behav. 41, 507–510 (1992).

    Article  CAS  Google Scholar 

  24. Morelli, M. & Di Chiara Eur. J. Pharmac. 117, 179–185 (1985).

    Article  CAS  Google Scholar 

  25. Ögren, S. O. & Fuxe, K. Neurosci. Lett. 85, 333–338 (1988).

    Article  Google Scholar 

  26. Casey, D. E. Psychopharmacology, 107, 18–22 (1992).

    Article  CAS  Google Scholar 

  27. Montmayeur, J.-P. et al. FEBS Lett 278, 239–243 (1991).

    Article  CAS  Google Scholar 

  28. Montmayeur, J.-P., Guiramand, J. & Borrelli, E. Molec. Endocr. 7, 161–170 (1993).

    CAS  PubMed  Google Scholar 

  29. Guiramand, J., Montmayeux, J. P., Ceraline, J., Bhatia, M. & Borrelli, E. J. biol. Chem. 270, 7354–7358 (1995).

    Article  CAS  Google Scholar 

  30. Dollé, P., Ruberte, E., Leroy, P., Moucis-Kay, G. & Chambon, P. Development 110, 1133–1151 (1990).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baik, JH., Picetti, R., Saiardi, A. et al. Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377, 424–428 (1995). https://doi.org/10.1038/377424a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377424a0

  • Springer Nature Limited

This article is cited by

Navigation