Skip to main content
Log in

Efficient light-emitting diodes based on polymers with high electron affinities

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CONJUGATED polymers have been incorporated as active materials into several kinds of electronic device, such as diodes, transistors1 and light-emitting diodes2. The first polymer light-emitting diodes were based on poly(p-phenylene vinylene) (PPV), which is robust and has a readily processible precursor polymer. Electroluminescence in this material is achieved by injection of electrons into the conduction band and holes into the valence band, which capture one another with emission of visible radiation. Efficient injection of electrons has previously required the use of metal electrodes with low work functions, primarily calcium; but this reactive metal presents problems for device stability. Here we report the fabrication of electroluminescent devices using a new family of processible poly(cyanoterephthalylidene)s. As the lowest unoccupied orbitals of these polymers (from which the conduction band is formed) lie at lower energies than those of PPV, electrodes made from stable metals such as aluminium can be used for electron injection. For hole injection, we use indium tin oxide coated with a PPV layer; this helps to localize charge at the interface between the PPV and the new polymer, increasing the efficiency of recombination. In this way, we are able to achieve high internal efficiencies (photons emitted per electrons injected) of up to 4% in these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burroughes, J. H., Jones, C. A. & Friend, R. H. Nature 335, 137–141 (1988).

    Article  ADS  Google Scholar 

  2. Burroughes, J. H. et al. Nature 347, 539–541 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Braun, D. & Heeger, A. J. Appl. Phys. Lett. 58, 1982–1984 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Ohmori, Y., Uchida, M., Muro, K. & Yoshino, K. Jap. J. appl. Phys. 30, L1938–L1940 (1991).

    Article  ADS  Google Scholar 

  5. Ohmori, Y., Uchida, M., Muro, K. & Yoshino, K. Jap. J. appl. Phys. 30, L1941–L1943 (1991).

    Article  ADS  Google Scholar 

  6. Grem, G., Leditzky, G., Ullrich, B. & Leising, G. Adv. Mater. 4, 36–37 (1992).

    Article  CAS  Google Scholar 

  7. Burn, P. L. et al. Nature 356, 47–49 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Holmes, A. B. et al. Synth. Met. 55–57, 4031–4040 (1993).

    Article  Google Scholar 

  9. Friend, R. H., Bradley, D. D. C. & Holmes, A. B. Phys. World 5, 42–46 (1992).

    Article  CAS  Google Scholar 

  10. Tang, C. W. & VanSlyke, S. A. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Adachi, C., Tsutsui, T. & Saito, S. Appl. Phys. Lett 57, 531–533 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Burn, P. L. et al. in Electrical, Optical, and Magnetic Properties of Organic Solid State Materials Vol. 245 (eds Chiang, L. Y., Garito, A. F. & Sandman, D. J.) 647–654 (Mater. Res. Soc. Symp. N, Pittsburgh, 1992).

    Google Scholar 

  13. Brown, A. R. et al. Appl. Phys. Lett. 61, 2793–2795 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Ohmori, Y., Uchida, M., Muro, K. & Yoshino, K. Solid St. Commun. 80, 605–608 (1991).

    Article  ADS  Google Scholar 

  15. Doi, S., Kuwabara, M., Noguchi, T. & Ohnishi, T. Synth. Met. 55–57, 4174–4179 (1993).

    Article  Google Scholar 

  16. Lenz, R. W. & Handlovitis, C. E. J. org. Chem. 25, 813–817 (1960).

    Article  CAS  Google Scholar 

  17. Hörhold, H.-H. Z. Chem. 12, 41–52 (1972).

    Google Scholar 

  18. Burn, P. L. et al. J. chem. Soc., Perkin Trans. 1, 3225–3231 (1992).

    Article  Google Scholar 

  19. Helbig, M. & Hörhold, H.-H. Makromol. Chem. 194, 1607–1618 (1993).

    Article  CAS  Google Scholar 

  20. Karg, S. et al. in Proc. 6th Symp. on Unconventional Photoactive Solids Leuven, Belgium, 1993; also as Molec. Cryst. liq. Cryst. (in the press).

    Google Scholar 

  21. Dannetun, P. et al. Synth. Met. 55–57, 212–217 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenham, N., Moratti, S., Bradley, D. et al. Efficient light-emitting diodes based on polymers with high electron affinities. Nature 365, 628–630 (1993). https://doi.org/10.1038/365628a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365628a0

  • Springer Nature Limited

This article is cited by

Navigation