Skip to main content
Log in

Worldwide migration of amplified insecticide resistance genes in mosquitoes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN Culex pipiens, overproduction of nonspecific esterases is a common mechanism of resistance to organophosphate insecticides1,2. The esterases are attributed to closely linked loci named A and B according to substrate preference3–6, and over-production of all esterases B is due to gene amplification7,8. Distribution of electrophoretically distinct variants of overproduced esterases A and B is geographically restricted, with the exception of esterases A2 and B2, always found together throughout at least three continents (Fig. 1). To determine whether this situation is due to migration or to a high mutation rate, esterase B structural genes and their flanking regions were compared by sequence and/or restriction fragment length polymorphism analysis. Whereas structural genes were similar, flanking regions of electrophoretically dissimilar esterases B varied considerably. In contrast, flanking sequences of esterases B2 from different geographical locations (Africa, Asia, North America) were identical. These results suggest that amplified esterase B2 genes originated from an initial event that has subsequently spread organophosphate insecticide resistance by migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fournier, D. et al. Pest. Biochem. Physiol. 27, 211–217 (1987).

    Article  CAS  Google Scholar 

  2. Mouchès, C. et al. Proc. natn. Acad. Sci. U.S.A 84, 2113–2116 (1987).

    Article  ADS  Google Scholar 

  3. Callaghan, A. thesis. Univ. of London (1989).

  4. Villani, F., White, G. B., Curtis, C. F. & Miles, S. J. Bull. ent. Res. 73, 153–170 (1983).

    Article  CAS  Google Scholar 

  5. Pasteur, N., Iseki, A. & Georghiou, G. P. Biochem. Genet. 19, 909–919 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Wirth, M. C., Marquine, M., Georghiou, G. P. & Pasteur, N. J. med. Entomol. 27, 202–206 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Mouchès, C. et al. Science 233, 778–780 (1986).

    Article  ADS  PubMed  Google Scholar 

  8. Raymond, M. et al. Biochem. Genet. 27, 417–423 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Mouchès, C. et al. Proc. nantn. Acad. Sci. U.S.A. 87, 2574–2578 (1990).

    Article  ADS  Google Scholar 

  10. de Stordeur, E. Biochem. Genet. 14, 481–493 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Curtis, C. F. & Pasteur, N. Bull. ent. Res. 71, 153–161 (1981).

    Article  Google Scholar 

  12. Raymond, M. et al. J. med. Ent. 24, 24–27 (1987).

    Article  CAS  Google Scholar 

  13. Magnin, M. thesis, Univ. Paris VI (1986).

  14. Andreadis, T. G. J. Am. Mosq. Control Assoc. 4, 256–260 (1988).

    CAS  PubMed  Google Scholar 

  15. Asahina, S. Jap. J. Med. Sci. Biol. 23, 255–258 (1970).

    Article  CAS  PubMed  Google Scholar 

  16. Highton, R. B. & Van Someren, E. C. C. Bull. WHO 42, 334–335 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Aquadro, C. F., Desse, S. F., Bland, M. M., Langley, C. H. & Laurie-Ahlberg, C. C. Genetics 114, 1165–1190 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kreitman, M. & Aguadé. M. Proc. natn. Acad. Sci. U.S.A. 83, 3562–3566 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Aguadé, M. Genetics 119, 135–140 (1988).

    PubMed  PubMed Central  Google Scholar 

  20. Simmons, G. M., Kreitman, M., Quattlebaum, W. F. & Miyashita, N. Evolution 43, 393–409 (1989).

    PubMed  Google Scholar 

  21. Pasteur, N. & Georghiou, G. P. J. Econ. Entomol. 82, 347–353 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Magnin, M., Marboutin, E. & Pasteur N. J. med. Ent. 25, 99–104 (1988).

    Article  CAS  Google Scholar 

  23. Hemingway, J., Callaghan, A. & Amin, A. Med. Vet. Ent. 3, 445–446 (1989).

    Article  Google Scholar 

  24. Beyssat-Arnaouty, V., Mouchès, C., Georghiou, G. P. & Pasteur, N. J. Am. Mosq. Control Assoc. 5, 196–200 (1989).

    CAS  PubMed  Google Scholar 

  25. Urbanelli, S., Bullini, L. & Villani, F. Bull. ent. Res. 75, 291–304 (1985).

    Article  Google Scholar 

  26. Pasteur, N., Sinègre, G. & Gabinaud, A. Biochem. Genet. 19, 499–508 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Villani, F. & Hemingway, J. J. Pest. Biochem. Physiol. 27, 218–228 (1987).

    Article  CAS  Google Scholar 

  28. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  29. Georghiou, G. P. & Pasteur, N. J. Econ. Ent. 73, 489–492 (1980).

    Article  CAS  Google Scholar 

  30. Georghiou, G. P., Metcalf, R. L. & Glidden, F. E. Bull. WHO 35, 691–708 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Raymond, M. et al. C.r. Acad. Sci. Paris 300, 509–512 (1985).

    CAS  Google Scholar 

  32. Beyssat-Arnaouty, V. thesis, Univ. Montpellier II (1989).

  33. Southern, E. M. J. molec. Biol. 98, 503 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raymond, M., Callaghan, A., Fort, P. et al. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature 350, 151–153 (1991). https://doi.org/10.1038/350151a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350151a0

  • Springer Nature Limited

This article is cited by

Navigation