Skip to main content
Log in

Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE failure of lesioned axons to regenerate over long distances in the mammalian central nervous system (CNS) is not due to an inability of central neurons to regenerate, but rather to the non-permissive nature of the CNS tissue environment1–4. Regenerating CNS axons, which grow well within a peripheral nerve, for example, fail to penetrate mature CNS tissue by more than about 1 mm1,5,6. Recent evidence indicates that this may be due to inhibitory membrane proteins associated with CNS oligodendrocytes and myelin2–4,7,8. We report here that human telencephalic neuroblasts implanted into the excitotoxically lesioned striatum of adult rats can escape or neutralize this inhibitory influence of the adult CNS environment and extend axons along major myelinated fibre tracts for distances of up to ∼20 mm. The axons were seen to elongate along the paths of the striato-nigral and cortico-spinal tracts to reach the substantia nigra, the pontine nuclei and the cervical spinal cord, which are the normal targets for the striatal and cortical projection neurons likely to be present in these implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. David, S. & Aguayo, A. J. Science 214, 931–933 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Schwab, M. E. & Thoenen, H. J. Neurosci. 5, 2415–2423 (1985).

    Article  CAS  Google Scholar 

  3. Carbonetto, S. Evans, D. & Cochard, P. J. Neurosci. 7, 610–620 (1987).

    Article  CAS  Google Scholar 

  4. Schnell, L. & Schwab, M. E. Nature 343, 269–272 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Ramon y Cajal, S. Degeneration and Regeneration of the Nervous System (Hafner, New York, 1959).

    Google Scholar 

  6. Vidal-Sanz, M., Bray, G. M., Villegas-Pérez, M. P., Thanos, S. & Aguayo, A. J. J. Neurosci. 7, 2894–2909 (1987).

    Article  CAS  Google Scholar 

  7. Schwab, M. E. & Caroni, P. J. Neurosci. 8, 2381–2393 (1988).

    Article  CAS  Google Scholar 

  8. Crutcher, K. A. Expl. Neurol. 104, 39–54 (1989).

    Article  CAS  Google Scholar 

  9. Brundin, P., Nilsson, O. G., Gage, F. H. & Björklund, A. Expl. Brain Res. 60, 204–208 (1985).

    Article  CAS  Google Scholar 

  10. Alfonsi, F., Darmon, M., Forest, N. & Paulin, D. in The Role of Cell Interactions in Early Neurogenesis (eds Duprat, A. M., Kato, A. C. & Weber, M.) 157–176 (Plenum, New York, 1984).

    Book  Google Scholar 

  11. Julien, J. P., Tretjakoff, I., Beaudet, L. & Peterson, A. Genes Dev. 1, 1085–1095 (1987).

    Article  CAS  Google Scholar 

  12. Ouimet, C. C., Miller, P. E., Hemmings Jr, H. C., Walaas, I. & Greengard, P. J. Neurosci. 4, 111–124 (1984).

    Article  CAS  Google Scholar 

  13. Wictorin, K., Ouimet, C. C. & Björklund, A. Eur. J. Neurosci. 1, 690–701 (1989).

    Article  Google Scholar 

  14. Graybiel, A. M., Liu, F.-C. & Dunnett, S. B. J. Neurosci. 9, 3250–3272 (1989).

    Article  CAS  Google Scholar 

  15. Doucet, G. et al. Expl. Neurol. 106, 1–19 (1989).

    Article  CAS  Google Scholar 

  16. Sesack, S. R., Deutch, A. Y., Roth, R. H. & Bunney, B. S. J. comp. Neurol. 290, 213–242 (1989).

    Article  CAS  Google Scholar 

  17. Cohen, J., Burne, J. F., Winter, J. & Barlett, P. Nature 322, 465–467 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Tomaselli, K. J., Neugebauer, K. M., Bixby, J. L., Lilien, J. & Reichardt, L. F. Neuron 1, 33–43 (1988).

    Article  CAS  Google Scholar 

  19. Björklund, A., Stenevi, U. & Svendgaard, N. A. Nature 262, 787–790 (1976).

    Article  ADS  Google Scholar 

  20. Björklund, A., Stenevi, U., Schmidt, D., Dunnett, S. B. & Gage, F. H. Acta Physiol. Scand. Suppl. 522, 9–18 (1983).

    PubMed  Google Scholar 

  21. Nornes, H., Björklund, A. & Stenevi, U. Cell Tiss. Res. 230, 15–35 (1983).

    Article  CAS  Google Scholar 

  22. Foster, G. A. et al. Expl. Brain Res. 60, 427–444 (1985).

    Article  CAS  Google Scholar 

  23. McLoon, L. K., McLoon, S. C., Chang, F.,-L.,F., Steedman, J. G. & Lund, R. D. in Neural Grafting in the Mammalian CNS (eds Björklund, A. & Stenevi, U.) 267–283 (Elsevier, Amsterdam, 1985).

    Google Scholar 

  24. Sotelo, C. & Alvarado-Mallart, R. M. Neuroscience 20, 1–22 (1987).

    Article  CAS  Google Scholar 

  25. Wictorin, K., Simerly, R. B., Isacson, O., Swanson, L. W. & Björklund, A. Neuroscience 30, 313–330 (1989).

    Article  CAS  Google Scholar 

  26. Zhou, C.-F. & Raisman, G. Neuroscience 32, 349–362 (1989).

    Article  CAS  Google Scholar 

  27. Björklund, A., Stenevi, U., Schmidt, R. H., Dunnett, S. B. & Gage, F. H. Acta Physiol. Scand. Suppl. 522, 1–75 (1983).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wictorin, K., Brundin, P., Gustavii, B. et al. Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature 347, 556–558 (1990). https://doi.org/10.1038/347556a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347556a0

  • Springer Nature Limited

This article is cited by

Navigation