Skip to main content

Intermediate Filaments as Markers of Neuronal Differentiation

  • Chapter
The Role of Cell Interactions in Early Neurogenesis

Part of the book series: NATO ASI Series ((NSSA,volume 77))

Abstract

Various polypeptides organized in fibrous networks forming microtubules, microfilaments and intermediate-filaments are implicated in axonal transport[1]. In the cytoplasm of all differentiated cells, each reseau is built with filaments constituted by a repeat of the same type of unit: ß and γ actins form microfilaments (diameter 70 Å), αß tubulin dimers polymerize in microtubules (diameter 250 Å) and one of the five polypeptide types autoasssembles to give intermediate sized filaments (diameter 80 to 140 Å). A variety of associated proteins are bound to the filaments with different affinities. Associated proteins could differ with the cell species conferring specific cell type properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. M. Black and R. J. Lasek, Slow components of axonal transport: two cytoskeletal networks, J. Cell Biol., 86:616–623 (1980).

    Article  Google Scholar 

  2. P. Soriano, P. Szabo, and G. Bernardi, The scattered distribution of actin genes in the mouse and human genomes, The Embo Journal, 1: (1983).

    Google Scholar 

  3. J. Vandekerckhove, K. Weber, The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle: a protein-chemical analysis of muscle actin differentiation, Differentiation, 14:123–133 (1979).

    Article  Google Scholar 

  4. P. Denoulet, B. Edde, C. Jeantet, and F. Gros, Evolution of tubulin heterogeneity during mouse brain development, Biochimie, 64:165–172 (1982).

    Article  Google Scholar 

  5. K. Dellagi, J. C. Brouet, J. Perreau, and D. Paulin, Human monoclonal IgM with autoantibody activity against intermediate filaments, Proc.Natl.Acad.Sci.USA, 79:446–450 (1982).

    Article  Google Scholar 

  6. B. H. Anderton, Intermediate filaments: a family of homologous structures, J.of Muscle Research and Cell Motility, 2:141–166 (1981).

    Article  Google Scholar 

  7. M. Osborn, N. Geisler, G. Shaw, G. Sharp, and K. Weber, Intermediate filaments, Cold Spring Harbor Symposia on Quantitative Biology, vol. XLVI, Organization of the Cytoplasm, Cold Spring Harbor Laboratory, (1982).

    Google Scholar 

  8. R. A. Nixon, B. A. Brown, and C. A. Marotta, Posttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons, J.of Cell Biol., 94:150–158 (1982).

    Article  Google Scholar 

  9. R. M. Pruss, R. Mirsky, M. C. Raff, B. Anderton, and R. Thorpe, A monoclonal antibody demonstrates that intermediate filaments share a common antigen, J.Cell Biol., 87:178A (1980).

    Google Scholar 

  10. N. Geisler, and K. Weber, Self-assembly in vitro of the 68,000 molecular weight component of the mammalian neurofilament triplet proteins into intermediate-sized filaments, J.Mol. Biol., 151:565–571 (1981).

    Article  Google Scholar 

  11. R. K. H. Liem, and S. B. Hutchinson, Purification of individual components of the neurofilament triplet: filament assembly from the 70,000-dalton subunit, Biochemistry USA, 21(13):3221 (1982).

    Article  Google Scholar 

  12. M. Willard, and C. Simon, Antibody decoration of neurofilaments, J.of Cell Biol., 89:198–205 (1981).

    Article  Google Scholar 

  13. G. A. Sharp, G. Shaw, and K. Weber, Immunoelectronmicroscopical localization of the three neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurones, Exp.Cell Res., 137:403–413 (1982).

    Article  Google Scholar 

  14. E. R. Kuczmarski, and J. L. Rosembaum, Studies on the organization and localization of actin and myosin in neurons, J.Cell Biol., 80:356–371 (1979).

    Article  Google Scholar 

  15. R. G. Nagele, and F. J. Roisen, Ultrastructure of a new microtubule-neurofilament coupler in nerves, Brain Research, 253: 31–37 (1982).

    Article  Google Scholar 

  16. M. L. Shelanski, J. F. Leterrier, and R. K. H. Liem, Evidence for interactions between neurofilaments and microtubules, Neurosci.Res.Program.Bull, 19(1):32 (1981).

    Google Scholar 

  17. A. Matus, R. Bernhardt, and T. Hugh-Jones, High molecular weight microtubule-associated proteins are preferentially associated with dentritic microtubules in brain, Proc.Natl.Acad.Sci.USA, 78(5):3010–3014 (1981).

    Article  Google Scholar 

  18. R. Thorpe, A. Delacourte, M. Ayers, C. Bullock, and B. H. Anderton, The polypeptides of isolated brain 10 nm filaments and their association with polymerized tubulin, Biochem.J., 181:275–284, (1979).

    Google Scholar 

  19. P. T. Davison, and R. N. Jones, Neurofilament proteins of mammals compared by peptide mapping, Brain Research 182:470473 (1980).

    Google Scholar 

  20. B. A. Brown, R. A. Nixon, P. Strocchi, and C. A. Marotta, Characterization and comparison of neurofilament proteins from rat and mouse CNS, J.of Neurochem., 36(1):143–153 (1981).

    Article  Google Scholar 

  21. H. Czonek, D. Solfer, K. Mack, and H. M. Wisnfewski, Similarity of neurofilament proteins from different parts of the rabbit nervous system, Brain Research, 216(2):387 (1981).

    Article  Google Scholar 

  22. V. Lee, H. L. Wu, and W. W. Schlaepfer, Monoclonal antibodies recognize individual neurofilament triplet proteins, Proc. Natl.Acad.Sci.USA, 79:6089–6092 (1982).

    Article  Google Scholar 

  23. J. Wood, and B. Anderton, Monoclonal antibodies to mammalian neurofilaments, Biosci.Rep., 1:263–8 (1981).

    Article  Google Scholar 

  24. F. Alfonsi, N. Forest, F. Gosselin, and D. Paulin, Structural homologies between the three proteins of the triplet neuro-filament or across species are revealed with monoclonal antibodies, (in preparation).

    Google Scholar 

  25. D. Paulin, C. Babinet, K. Weber, and M. Osborn, Antibodies as probes of cellular differentiation and cytoskeletal organization in the mouse blastocyst, Exp.Cell Res., 130:297–304 (1980).

    Article  Google Scholar 

  26. P. Brulet, C. Babinet, R. Kemler, and F. Jacob, Monoclonal antibodies against trophectoderm specific markers during mouse blastocyst formation, Proc.Natl.Acad.Sci.USA, 77:1113, (1980).

    Article  Google Scholar 

  27. B. W. Jackson, C. Grund, S. Winter, W. W. Franke, and K. Illmensee, Formation of cytoskeletal elements during mouse embryogenesis II. Epithelial differentiation and intermediate-sized filaments in early postimplantation embryos, Differentiation, 20:203–216 (1981).

    Article  Google Scholar 

  28. W. W. Franke, C. Grund, C. Kuhn, B. W. Jackson, and K. Illmensee, Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments, Differentiation, 23(1):43 (1981).

    Article  Google Scholar 

  29. G. Shaw, and K. Weber, Differential expression of neurofilament triplet proteins in brain development, Nature, 298:277–279 (1982)

    Article  Google Scholar 

  30. E. Debus, G. Fluegge, K. Weber, and M. Osborn, A monoclonal antibody specific for the 200 k polypeptide of the neuro-filament triplet, The Embo Journal, 1:41–45 (1982).

    Google Scholar 

  31. C. E. Henderson, M. Huchet, and J. P. Changeux, Two distinct activities affecting neurite outgrowth from embryonic chicken spinal neurons, Devel.Biol., (in press) (1983).

    Google Scholar 

  32. H. Czosnek, D. Soifer, and H. M. Wisniewski, Studies on the biosynthesis of neurofilament proteins, J.Cell Biol., 85:726–734 (1980).

    Article  Google Scholar 

  33. P. Strocchi, D. Dahl, and J. M. Gilbert, Studies on the biosynthesis of intermediate filament proteins in the rat CNS, J.Neurochem., 39:1132–1141 (1982).

    Article  Google Scholar 

  34. C. Hall, and L. Lim, Developmental changes in the composition of polyadenylated RNA isolated from free and membrane-bound polyribosomes of the rat forebrain, analysed by translation in vitro, Biochem.J., 196:327–336 (1981).

    Google Scholar 

  35. W. W. Franke, E. Schmid, M. Osborn, K. Weber, Different intermediate filaments distinguished by immunofluorescence microscopy, Proc.Natl.Acad.Sci.USA, 75:5034–5038 (1978).

    Article  Google Scholar 

  36. F. C. S. Ramaekers, M. Osborn, E. Schmid, K. Weber, H. Bloemendal, and W. W. Franke, Identification of the cytoskeletal proteins in lens-forming cells, a special epithelioid cell type, Exp.Cell Res., 127:309–327 (1980).

    Article  Google Scholar 

  37. D. Barritault, Y. Courtois, and D. Paulin, Biochemical evidence that vimentin is the only in vivo constituent of the intermediate-sized filaments in adult bovine epithelial lens cells, Biol.Cellulaire, 39(3):335–338 (1980).

    Google Scholar 

  38. T. Raju, A. Bignami, and D. Dahl, In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Immunofluorescence study with neurofilament and glial filament antisera, Devel.Biol., 85:344–357 (1981).

    Article  Google Scholar 

  39. E. R. Abney, P. B. Barlett, and M. C. Raff, Astrocytes, ependymal cells and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain, Devel.Biol., 83:301–310 (1981).

    Article  Google Scholar 

  40. D. Dahl, A. Bignami, K. Weber, and M. Osborn, Filament proteins in rat optic nerves undergoing Wallerian degeneration. Localization of vimentin, the fibroblastic 100 A filament protein, in normal and reactive astrocytes, Exptl.Neurol., 73:496 (1981).

    Article  Google Scholar 

  41. J. Schnitzer, W. W. Franke, and M. Schachner, Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system, J.Cell Biol., 90:435 (1981).

    Article  Google Scholar 

  42. S. H. Yen, and K. L. Fields, Antibodies to neurofilament, glial filament and fibroblast intermediate filament proteins bind to different cell types of the nervous system, J.Cell Biol., 88:115 (1981).

    Article  Google Scholar 

  43. G. Shaw, M. Osborn, and K. Weber, An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain, Europ.J.Cell Biol., 26:68–82 (1981).

    Google Scholar 

  44. A. Bignami, T. Raju, and D. Dahl, Localization of vimentin, the non-specific intermediate filament protein, in embryonal glia and in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera, Develop.Biol., 91(2):286 (1982).

    Article  Google Scholar 

  45. D. Dahl, D. C. Rueger, A. Bignami, K. Weber, and M. Osborn, Vimentin, the 57,000 dalton protein of fibroblast filaments, is the major cytoskeletal component in immature glia, Eur.J. Cell Biol., 24:191 (1981).

    Google Scholar 

  46. S. J. Tapscott, G. S. Bennett, Y. Toyoma, F. Kleinbart, and H. Holtzer, Intermediate filament proteins in the developing chick spinal cord, Develop.Biol., 85:40 (1981).

    Article  Google Scholar 

  47. S. J. Tapscott, G. S. Bennett, and H. Holtzer, Neuronal precursor cells in the chick neural tube express neurofilament proteins, Nature, 292(5826):836 (1981).

    Article  Google Scholar 

  48. M. Jacobs, Q. Lim Choo, and C. Thomas, Vimentin and 70 k neuro-filament protein co-exist in embryonic neurones from spinal ganglia, J.of Neurochem., 38(4):969–977 (1982).

    Article  Google Scholar 

  49. C. Ziller, E. Dupin, P. Brazeau, D. Paulin, and N. M. Le Douarin, Early segregation of a neuronal precursor cell line in the neural crest as revealed by culture in a chemically defined medium, Cell, 32:627–638 (1983).

    Article  Google Scholar 

  50. M. Raff, The role of cell interactions in early embryogenesis. This symposium.

    Google Scholar 

  51. R. Mirsky, The role of cell interactions in early embryogenesis. This symposium.

    Google Scholar 

  52. Prochiantz, A. Delacourte, M. C. Daguet, and D. Paulin, Intermediate filament proteins in mouse brain cells cultured in the presence or absence of fetal calf serum, Exp.Cell Res., 139 (1982).

    Google Scholar 

  53. M. Darmon, M. L. Buc-Caron, D. Paulin, and F. Jacob, Control by the extracellular environment of differentiation pathways in 1003 embryonal carcinoma cells: study at the level of specific intermediate filaments, The Embo Journal, 1(8):901–906 (1982).

    Google Scholar 

  54. D. Paulin, H. Jakob, F. Jacob, K. Weber, and M. Osborn, In vitro differentiation of mouse teratocarcinoma cells monitored by intermediate filament expression, Differentiation, 22:90–99 (1982).

    Article  Google Scholar 

  55. B. A. Brown, R. A. Nixon, P. Strocchi, and C. A. Marotta, Characterization and comparison of neurofilament proteins from rat and mouse CNS, J.Neurochem., 36:143 (1981).

    Article  Google Scholar 

  56. U. C. Dräger, Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina, Nature, 303:169–172 (1983).

    Article  Google Scholar 

  57. I. Virtanen, V. P. Lehto, E. Lehtonen, T. Vartio, S. Stenman, P. Kurki, O. Wager, J. V. Small, D. Dahl, and R. A. Badley, Expression of intermediate filaments in cultured cells, J.Cell Sci., 50:45–63 (1981).

    Google Scholar 

  58. A. O. Jorgensen, L. Subrahmanyan, C. Turnbull, and V. Kalnins, Localization of the neurofilament protein in neuroblastoma cells by immunofluorescent staining, Proc.Natl.Acad.Sci.USA, 79(9):3192–3196 (1976).

    Article  Google Scholar 

  59. H. Jakob, and Forecht, (unpublished results).

    Google Scholar 

  60. A. Bignami, and D. Dahl, Differentiation of astrocytes in the cerebellar cortex and the pyramidal tracts of the newborn rat. An immunofluorescence study with antibodies to a protein specific to astrocytes, Brain Research 49:393 (1973).

    Article  Google Scholar 

  61. D. Dahl, P. Strocchi, and A. Bignami, Vimentin in the central nervous system. A study of the mesenchymal-type intermediate filament-protein in wallerian degeneration and in postnatal rat development by two-dimensional gel electrophoresis, Differentiation, 22:185–190 (1982).

    Article  Google Scholar 

  62. M. Osborn, M. Altmannsberger, G. Shaw, A. Schauer, and K. Weber, Various sympathetic derived human tumors differ in neuro-filament expression, Virchows Arch.(Cell Pathol.), 299:1–16 (1982).

    Google Scholar 

  63. R. M. Marchbanks, Biochemistry of alzheimer’s dementia, J.Neurochem., 39(1):9–15 (1982).

    Article  Google Scholar 

  64. E. Rungger-Brändle, G. Gabbiani, The role of cytoskeletal and cytocontractile elements in pathologic processes, Cytoskeleton in Pathology, 110(3):361–392 (1983).

    Google Scholar 

  65. E. Lazarides, Intermediate filaments chemical heterogeneity in differentiation, Cell, 23:649 (1981).

    Article  Google Scholar 

  66. P. Cochard, and D. Paulin, (manuscrit in préparation).

    Google Scholar 

  67. J. Wartiowara, P. Liesi, H. Hervonen, and L. Recherdt, Neural differentiation in F9 teratocarcinoma cultures. This symposium.

    Google Scholar 

  68. M. M. Portier, B. Croizat, and F. Gros, Sequence changes in cytoskeleton components during neuroblastoma differentiation, Febs Letter, 86(2):283–288 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Alfonsi, F., Darmon, M., Forest, N., Paulin, D. (1984). Intermediate Filaments as Markers of Neuronal Differentiation. In: Duprat, AM., Kato, A.C., Weber, M. (eds) The Role of Cell Interactions in Early Neurogenesis. NATO ASI Series, vol 77. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1203-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1203-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1205-5

  • Online ISBN: 978-1-4684-1203-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics