Skip to main content
Log in

Modification of synaptic input following unilateral labyrinthectomy

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

UNILATERAL vestibular nerve transection is followed by postural and locomotor disturbances that disappear to a large extent with time after the lesion1. This compensation requires a central readjustment of the tonic and phasic output from the remaining vestibular apparatus to the motor nuclei involved in the control of limb and head muscles. To study the mechanisms of this type of motor learning at the single neurone level, we have used the frog (Rana temporaria), because in this species the time course of the postural compensation following hemilabyrinthectomy has been thoroughly studied2. Furthermore, the synaptic circuitry and functional organisation of the peripheral and central vestibular systems are well known for this species3. Since the vestibular nuclei are the first integrative structures in which bilateral vestibular and other sensory inputs converge, and since their output influences motor systems directly or indirectly, we began to look for plastic changes in second order vestibular neurones. Many of these neurones are monosynaptically excited from the ipsilateral4 and disynaptically through commissural fibres from the contralateral5 labyrinth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schaefer, K. P. & Meyer, D. L. in Handbook of Sensory Physiology, VI/2 (ed. Kornhuber, H. H.) 463–490 (Springer, Berlin, Heidelberg & New York 1974).

    Google Scholar 

  2. Kolb, E. Z. vergl. Physiol. 37, 136–160 (1955).

    Article  Google Scholar 

  3. Precht, W. in Frog Neurobiology (eds Llinás, R. & Precht, W.) 481–512 (Springer, Berlin, Heidelberg & New York, 1976).

    Book  Google Scholar 

  4. Precht, W., Richter, A., Ozawa, S. & Shimazu, H. Expl Brain Res. 19, 377–393 (1974).

    Article  CAS  Google Scholar 

  5. Ozawa, S., Precht, W. & Shimazu, H. Expl Brain Res. 19, 394–405 (1974).

    Article  CAS  Google Scholar 

  6. Fadiga, E. & Brookhart, J. M. Am. J. Physiol. 198, 693–703 (1960).

    Article  CAS  Google Scholar 

  7. Rall, W. Neurophysiology 30, 1138–1168 (1967).

    Article  CAS  Google Scholar 

  8. Hillman, D. E. Prog. Brain Res. 37, 329–339 (1972).

    Article  ADS  CAS  Google Scholar 

  9. Fuller, P. M. Brain Behav. Evol. 10, 157–169 (1974).

    Article  CAS  Google Scholar 

  10. Tsukahara, N., Hultborn, H., Murakami, F. & Fujito, Y. J. Neurophysiol. 38, 1359–1372 (1975).

    Article  CAS  Google Scholar 

  11. Nakamura, Y., Mizuno, N. Konishi, A. & Sato, M. Brain Res. 82, 298–301 (1974).

    Article  CAS  Google Scholar 

  12. Kuffler, S. W., Dennis, M. J. & Harris, A. J. Proc. R. Soc. B177, 555–563 (1971).

    ADS  CAS  Google Scholar 

  13. Precht, W., Shimazu, H. & Markham, C. H. J. Neurophysiol. 29, 996–1010 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DIERINGER, N., PRECHT, W. Modification of synaptic input following unilateral labyrinthectomy. Nature 269, 431–433 (1977). https://doi.org/10.1038/269431a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269431a0

  • Springer Nature Limited

This article is cited by

Navigation