Skip to main content

Advertisement

Log in

Comparison of α-bungarotoxin binding to skeletal muscles after inactivity or denervation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DENERVATION of skeletal muscles causes a spread of acetyl-choline (ACh) sensitivity along muscle fibres, but it is not yet clear whether this results from muscle inactivity or from a loss of trophic influence of the nerve on the muscle1. It has been suggested that inactivity is responsible for the phenomenon because the application of a cuff containing a local anaesthetic to a nerve blocked the conduction of the nerve impulses and caused the development of widespread sensitivity to ACh (ref. 2, but see ref. 3). The local anaesthetics used in that study, however, have since been shown to block axoplasmic transport in vitro4,5 and in vivo6, as well as to induce neuronal degeneration7. Axoplasmic transport seems to be involved in the trophic influence of the nerve on muscle because blocking this transport induces spreading of ACh sensitivity in muscle fibres8,9. We have used tetrodotoxin (TTX), incorporated into silicone cuffs placed around motor nerves, to test whether the resultant inactivity induced a spread of ACh sensitivity in skeletal muscle, as inferred from the binding of α-bungarotoxin (α-BuTX). TTX was chosen because it does not block axoplasmic transport in vitro5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, A. J., A. Rev. Physiol., 36, 251–305 (1974).

    Article  CAS  Google Scholar 

  2. Lømo, T., and Rosenthal, J., J. Physiol Lond., 221, 493–513 (1972).

    Article  Google Scholar 

  3. Robert, E. D., and Oester, Y. T., J. Pharmac. exp. Ther., 174, 133–140 (1970).

    CAS  Google Scholar 

  4. Fink, B. R., Kennedy, R. D., Hendrickson, A. E., and Middaugh, M. E., Anesthesiology, 36, 422–432 (1972).

    Article  CAS  Google Scholar 

  5. Anderson, K.-E., and Edström, A., Brain Res., 50, 125–134 (1973).

    Article  CAS  Google Scholar 

  6. Bisby, M. A., Expl Neurol., 47, 481–489 (1975).

    Article  CAS  Google Scholar 

  7. Blunt, R. J., and Vrbová, G., Pflügers Arch. Eur. J. Physiol., 357, 187–199 (1975).

    Article  CAS  Google Scholar 

  8. Hofmann, W. W., and Thesleff, S., Eur. J. Pharmac., 20, 256–260 (1972).

    Article  CAS  Google Scholar 

  9. Albuquerque, E. X., Warnick, J. E., Tasse, J. R., and Sansome, F. M., Expl Neurol., 37, 607–634 (1972).

    Article  CAS  Google Scholar 

  10. Berg, D. K., Kelly, R. B., Sargent, P. B., Williamson, P., and Hall, Z. W., Proc. natn. Acad. Sci. U.S.A., 69, 147–151 (1972).

    Article  ADS  CAS  Google Scholar 

  11. Kása, P., Mann, S. P., Karcsu, S., Toth, L., and Jordan, S., J. Neurochem., 21, 431–436 (1973).

    Article  Google Scholar 

  12. Ellman, G. L., Courtney, D., Andres, V., Jr, and Featherstone, R. M., Biochem. Pharmac., 7, 88–95 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LAVOIE, PA., COLLIER, B. & TENENHOUSE, A. Comparison of α-bungarotoxin binding to skeletal muscles after inactivity or denervation. Nature 260, 349–350 (1976). https://doi.org/10.1038/260349a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/260349a0

  • Springer Nature Limited

This article is cited by

Navigation