Skip to main content
Log in

The Participation of Presynaptic Alpha7 Nicotinic Acetylcholine Receptors in the Inhibition of Acetylcholine Release during Long-Term Activity of Mouse Motor Synapses

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

In the motor synapses of the mouse diaphragm, we recorded the miniature endplate potentials (MEPPs) and multiquantal endplate potentials induced by stimulation of the phrenic nerve (EPPs). Prolonged continuous rhythmic stimulation (50 Hz for 40 seconds) caused a depression of the synaptic transmission in the form of a gradual biphasic decrease in the quantal content of EPPs in the train. A rapid decrease in the quantal content of the EPPs to 50% of the amplitude of the first EPPs in the train (EPP1) during the first 10 seconds of activity was followed by a slower decrease in the EPP quantum content to 35–40% of EPP1 by the 40th second of stimulation. Blockage of the α7 nicotinic acetylcholine receptors by methyllycaconitine (20 nM), as well as ryanodine receptors by ryanodine (3 µM), or small-conductance calcium-activated potassium channels of the SK-type by apamin (1 µM) significantly reduced the development of depression; the EPP quantal content decreased to 65–70% of EPP1 by the 10th second of stimulation and maintained at this level for the next 30 seconds of stimulation. It was concluded that in mouse cholinergic motor synapses, the mechanism of transient depression of transmission may be autoinhibition of acetylcholine quantal secretion by endogenous acetylcholine/choline, which activates the α7 nicotinic acetylcholine receptors and triggers the signaling cascade that involves presynaptic ryanodine receptors and SK channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kabbani, N. and Nichols, R.A., Trends Pharmacol. Sci., 2018, vol. 39, pp. 354–366.

    Article  CAS  PubMed  Google Scholar 

  2. Alkondon, M., Pereira, E.F., Cortes, W.S., Maelicke, A., and Albuquerque, E.X., Eur. J. Neurosci., 1997, vol. 9, pp. 2734–2742.

    Article  CAS  PubMed  Google Scholar 

  3. Papke, R.L. and Porter, PapkeJ.K., Br. J. Pharmacol, 2002, vol. 137, pp. 49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Uteshev, V.V., Meyer, E.M., and Papke, R.L., J. Neurophysiol., 2003, vol. 89, pp. 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  5. Shen, J. and Yakel, J.L., Acta Pharmacol. Sin, 2009, vol. 30, pp. 673–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uteshev V. V., in: Advances in Experimental Medicine and Biology, 2012, pp. 603–638.

  7. Papke, R.L., Biochem. Pharmacol., 2014, vol. 89, pp. 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dani, J.A. and Bertrand, D., Annu. Rev. Pharmacol. Toxicol., 2007, vol. 47, pp. 699–729.

    Article  CAS  PubMed  Google Scholar 

  9. Koukouli, F. and Maskos, U., Biochem. Pharmacol., 2015, vol. 97, pp. 378–387.

    Article  CAS  PubMed  Google Scholar 

  10. Gaydukov, A.E., Bogacheva, P.O., Tarasova, E.O., and Balezina, O.P., Acta Naturae, 2014, vol. 6, pp. 110–115.

    Article  CAS  Google Scholar 

  11. Gaydukov, A.E. and Balezina, O.P., Acta Naturae, vol. 9, pp. 110–113.

  12. Tarasova, E.O., Miteva, A.S., Gaidukov, A.E., and Balezina, O.P., Biochem. Suppl. Ser. A Membr. Cell Biol., 2015, vol. 9, pp. 318–328.

    Google Scholar 

  13. McLachlan, E.M. and Martin, A.R., J. Physiol., 1981, vol. 311, pp. 307–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gerasimova, E., Lebedeva, J., Yakovlev, A., Zefirov, A., Giniatullin, R., and Sitdikova, G., Neuroscience, 2015, vol. 303, pp. 577–585.

    Article  CAS  PubMed  Google Scholar 

  15. Regehr, W.G., Cold Spring Harb. Perspect. Biol., 2012, vol. 4.

  16. Fioravante, D. and Regehr, W.G., Curr. Opin. Neurobiol., 2011, vol. 21, pp. 269–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ruiz, R., Cano, R., Casanas, J.J., Gaffield, M.A., Betz, W.J., and Tabares, L., J. Neurosci., 2011, vol. 31, pp. 2000–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cano, R., Ruiz, R., Shen, C., Tabares, L., and Betz, W.J., Cell Calcium, 2012, vol. 52, pp. 321–326.

    Article  CAS  PubMed  Google Scholar 

  19. Hosoi, N., Holt, M., and Sakaba, T., Neuron, 2009, vol. 63, pp. 216–229.

    Article  CAS  PubMed  Google Scholar 

  20. Neher, E., Front. Synaptic Neurosci., 2010, vol. 2, p. 144.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Forsythe, I.D., Tsujimoto, T., Barnes-Davies, M., Cuttle, M.F., and Takahashi, T., Neuron, 1998, vol. 20, pp. 797–807.

    Article  CAS  PubMed  Google Scholar 

  22. Neher, E. and Sakaba, T., Neuron, 2008, vol. 59, pp. 861–872.

    Article  CAS  PubMed  Google Scholar 

  23. Mochida, S., Few, A.P., Scheuer, T., and Catterall, W.A., Neuron, 2008, vol. 57, pp. 210–216.

    Article  CAS  PubMed  Google Scholar 

  24. Catterall, W.A. and Few, A.P., Neuron, 2008, vol. 59, pp. 882–901.

    Article  CAS  PubMed  Google Scholar 

  25. Nanou, E., Yan, J., Whitehead, N.P., Kim, M.J., Froehner, S.C., Scheuer, T., and Catterall, W.A., Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, pp. 1068–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mochida, S., Proc. Japan Acad. Ser. B, vol. 93, pp. 802–820.

  27. Castillo, P.E., Cold Spring Harb. Perspect. Biol, 2012, vol. 4, p. a005728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Atwood, B.K., Lovinger, D.M., and Mathur, B.N., Trends Neurosci., 2014, vol. 37, pp. 663–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tomàs, J., Santafè, M.M., Garcia, N., Lanuza, M.A., Tomàs, M., Besalduch, N., Obis, T., Priego, M., and Hurtado, E., J. Neurosci. Res., 2014, vol. 92, pp. 543–554.

    Article  CAS  PubMed  Google Scholar 

  30. Prior, C. and Singh, S., Br. J. Pharmacol., 2000, vol. 129, pp. 1067–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oliveira, L. Timoteo, M.A., and Correia-de-Sá, P., Eur. J. Neurosci., 2002, vol. 15, pp. 1728–1736.

    Article  PubMed  Google Scholar 

  32. Khaziev, E., Samigullin, D., Zhilyakov, N., Fatikhov, N., Bukharaeva, E., Verkhratsky, A., and Nikolsky, E., Front. Physiol., 2016, vol. 7, p. 621.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Parikh, V. and Sarter, M., J. Neurochem., 2006, vol. 97, pp. 488–503.

    Article  CAS  PubMed  Google Scholar 

  34. Gusev, A.G. and Uteshev, V.V., J. Pharmacol. Exp. Ther., 2010, vol. 332, pp. 588–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Corradi, J. and Bouzat, C., Mol. Pharmacol., 2016, vol. 90, pp. 288–299.

    Article  CAS  PubMed  Google Scholar 

  36. Sharma, G. and Vijayaraghavan, S., Neuron, 2003, vol. 38, pp. 929–939.

    Article  CAS  PubMed  Google Scholar 

  37. Griguoli, M., Scuri, R., Ragozzino, D., and Cherubini, E., Eur. J. Neurosci., 2009, vol. 30, pp. 1011–1022.

    Article  PubMed  Google Scholar 

  38. Davis, G.W. and Müller, M., Annu. Rev. Physiol., 2015, vol. 77, pp. 251–270.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gaydukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaydukov, A.E., Bogacheva, P.O. & Balezina, O.P. The Participation of Presynaptic Alpha7 Nicotinic Acetylcholine Receptors in the Inhibition of Acetylcholine Release during Long-Term Activity of Mouse Motor Synapses. Neurochem. J. 13, 20–27 (2019). https://doi.org/10.1134/S1819712419010082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712419010082

Keywords

Navigation