Skip to main content

Advertisement

Log in

Hydroxyapatite formed from Coral Skeletal Carbonate by Hydrothermal Exchange

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

WE have prepared porous microstructures, having potential for prosthetic applications, consisting of hydroxapatite and of whitlockite, by employing exchange reactions at elevated temperatures and pressures. Rather demanding specifications are to be met by biomaterials being considered for tooth or bone replacement. Porous solids have the advantage of allowing circulation of body fluids and of increasing the potential for firm attachment of body tissue1,2. Weber et al.3 successfully replicated the porous structure of echinoid skeletal material in epoxy resin and in sodium silicate; and White et al.4 achieved replication of the coral Porites structure with methacrylate, tin, Tichonium, and sintered Al2O3. This was the starting point for our attempts to reproduce such structures in the phosphatic material which is a major component of human teeth and bones, hydroxyapatite. Such a material, porous, inorganic and sterile (formed at high temperatures and pressures), should be highly compatible with body tissue, and when used as bone implants may become essentially integral with the bone. Furthermore, composites of such porous hydroxyapatite with other materials including metals4 may achieve optimum mechanical and physical properties for a particular application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klawitten, J. J., thesis, Clemson University, South Carolina (1970).

  2. Hulbert, S. F., Klawitten, J. J., Sauer, B. W., and Matthews, J. R., Tech. Rept. No. 2, ONR, N00014-71-A-0339-001 (Proj. No. NR032-529), May 1, 1972.

  3. Weber, J. N., White, E. W., and Lebiedzik, J., Nature, 233, 337 (1971).

    Article  ADS  CAS  Google Scholar 

  4. White, R. L., Weber, J. N., and White, E. W., Science, N.Y., 176, 922 (1972).

    Article  ADS  CAS  Google Scholar 

  5. Roy, R., and Tuttle, O. F., Physics and Chemistry of the Earth, 1, 138 (Pergamon, London, 1956).

    Google Scholar 

  6. Weber, J. N., Magnesium in Echinoderm Calcite, M.R.L. Monograph No. 4, 83 (1969).

    Google Scholar 

  7. Weber, J., Greer, R., Voight, B., White, E. W., and Roy, R., J. Ultrastruct. Res., 26, 355 (1969).

    Article  CAS  Google Scholar 

  8. Nadel, M., Trombe, J. C., Bonel, G., and Montel, G., J. Chim. phys., 67, 1161 (1970).

    Article  Google Scholar 

  9. Eysel, W., and Roy, D. M., Am. Assn Cryst. Growth, 65, July 1972 Program.

  10. Eysel, W., and Roy, D. M., J. Cryst. Growth, 20, 245 (1973).

    Article  ADS  CAS  Google Scholar 

  11. Roy, D. M., Mat. Res. Bull., 6, 1337 (1971).

    Article  CAS  Google Scholar 

  12. Roy, D. M., and Roy, R., Structural Properties of Hydroxyapatite and Related Compounds, chap. 16 (edit. by Brown, W. E., and Young, R. A.) (Gordon and Breach, New York) (in the press).

  13. Dickens, B., Bowen, J. S., and Brown, W. E., Abst. No. 676, IADR Meeting, Chicago, Ill., March, 1971.

  14. Naray-Szabo, S., Zeit. Kristallogr. Kristall geom., 385 (1930).

  15. Gron, P., van Campen, G. J., and Lindstrom, I., Archs oral Biol., 12, 829 (1967).

    Article  CAS  Google Scholar 

  16. Dickens, B., Structural Properties of Hydroxyapatite and Related Compounds (edit. by Brown, W. E., and Young, R. A), chap. 21 (Gordon and Breach, New York) (in the press).

  17. Calvo, C., and Gopal, R., Paper K-4, ACA Summer Meeting, Carleton University, Ottawa, Canada Aug. 1970.

  18. Gopal, R., and Calvo, C., Nature phys. Sci., 237, 30 (1972).

    Article  ADS  CAS  Google Scholar 

  19. Young, R. A., Sudarsaran, K., and Mackie, P. E., Bull. Soc. chim. Fr., 1760 (1968).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ROY, D., LINNEHAN, S. Hydroxyapatite formed from Coral Skeletal Carbonate by Hydrothermal Exchange. Nature 247, 220–222 (1974). https://doi.org/10.1038/247220a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/247220a0

  • Springer Nature Limited

This article is cited by

Navigation