Space Science Reviews

, Volume 94, Issue 3, pp 429–671

Physics of Mass Loaded Plasmas


  • Károly Szegö
    • KFKI Research Institute for Particle and Nuclear Physics
  • Karl-Heinz Glassmeier
    • Institut für Geophysik und MeteorologieTechnische Universität Braunschweig
  • Robert Bingham
    • Rutherford Appleton Laboratory
  • Alexander Bogdanov
    • Max-Planck-Institut für Extraterrestrische Physik
  • Christian Fischer
    • Max-Planck-Institut für Extraterrestrische Physik
  • Gerhard Haerendel
    • Max-Planck-Institut für Extraterrestrische Physik
  • Armando Brinca
    • Centro de Fisica de PlasmasInstituto Superior Tecnico
  • Tom Cravens
    • Department of Physics and AstronomyUniversity of Kansas
  • Eduard Dubinin
    • Max-Planck-Institut für Aeronomie
  • Konrad Sauer
    • Max-Planck-Institut für Aeronomie
  • Len Fisk
    • University of Michigan
  • Tamas Gombosi
    • University of Michigan
  • Nathan Schwadron
    • University of Michigan
  • Phil Isenberg
    • Space Science Center, Morse HallUniversity of New Hampshire
  • Martin Lee
    • Space Science Center, Morse HallUniversity of New Hampshire
  • Christian Mazelle
    • CNRS-CESR, 9
  • Eberhard Möbius
    • Space Science Center, Morse HallUniversity of New Hampshire
  • Uwe Motschmann
    • Institut für Theoretische PhysikTechnische Universität Braunschweig
  • Vitali D. Shapiro
    • Department of PhysicsUniversity of California San Diego
  • Bruce Tsurutani
    • Jet Propulsion Laboratory 169-506
  • Gary Zank
    • The Bartol Research InstituteThe University of Delaware

DOI: 10.1023/A:1026568530975

Cite this article as:
Szegö, K., Glassmeier, K., Bingham, R. et al. Space Science Reviews (2000) 94: 429. doi:10.1023/A:1026568530975


In space plasmas the phenomenon of mass loading is common. Comets are one of the most evident objects where mass loading controls to a large extent the structure and dynamics of its plasma environment. New charged material is implanted to the fast streaming solar wind by planets, moons, other solar system objects, and even by the interstellar neutral gas flowing through our solar system. In this review we summarize both the current observations and the relevant theoretical approaches. First we survey the MHD methods, starting with a discussion how mass loading affects subsonic and supersonic gasdynamics flows, continuing this with single and multi-fluid MHD approaches to describe the flow when mass, momentum and energy is added, and we finish this section by the description of mass loaded shocks. Next we consider the kinetic approach to the same problem, discussing wave excitations, pitch angle and energy scattering in linear and quasi-linear approximations. The different descriptions differ in assumptions and conclusions; we point out the differences, but it is beyond the scope of the paper to resolve all the conflicts. Applications of these techniques to comets, planets, artificial ion releases, and to the interplanetary neutrals are reviewed in the last section, where observations are also compared with models, including hybrid simulations as well. We conclude the paper with a summary of the most important open, yet unsolved questions.

Download to read the full article text

Copyright information

© Kluwer Academic Publishers 2000