3D-Object Space Reconstruction from Planar Recorded Data of 3D-Integral Images

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The paper presents a novel algorithm for object space reconstruction from the planar (2D) recorded data set of a 3D-integral image. The integral imaging system is described and the associated point spread function is given. The space data extraction is formulated as an inverse problem, which proves ill-conditioned, and tackled by imposing additional conditions to the sought solution. An adaptive constrained 3D-reconstruction regularization algorithm based on the use of a sigmoid function is presented. A hierarchical multiresolution strategy which employes the adaptive constrained algorithm to obtain highly accurate intensity maps of the object space is described. The depth map of the object space is extracted from the intensity map using a weighted Durbin–Willshaw algorithm. Finally, illustrative simulation results are given.