Skip to main content
Log in

Automatic objects’ depth estimation based on integral imaging

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A new approach for depth estimation based on integral imaging is proposed. In this method, multiple viewpoint images captured from a three-dimensional scene are used to extract the range information of the scene. These elemental images are captured through an array of lenses over a high-resolution camera or an array of cameras. Then the scene is computationally reconstructed in different depths using integral imaging reconstruction algorithm. Finally, by processing the reconstructed images and finding objects of the scene in these images using a matching technique with speeded-up robust features (SURF), the depth information of the objects will be acquired. Experimental results show that the proposed method has high accuracy and does not have many limitations of standard image processing, including sensitivity to the surface type and size of the objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aloni D, Stern A, Javidi B (2011) Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization. Opt Express 19:19681–19687

    Article  Google Scholar 

  2. Ashutosh S, Schulte J, Ng AY (2007) Depth estimation using monocular and stereo cues. IJCAI 7:2197–2203

    Google Scholar 

  3. Aslantas V (2007) A depth estimation algorithm with a single image. Opt Express 15(8):5024–5029

    Article  Google Scholar 

  4. Axelsson P (1999) Processing of laser scanner data–algorithms and applications. ISPRS J Photogramm Remote Sens 54:138–147

    Article  Google Scholar 

  5. Badenko V, Fedotov A, Vinogradov K (2018) Algorithms of laser scanner data processing for ground surface reconstruction. In: International conference on computational science and its applications, pp 397–411

  6. Bae J, Yoo H (2019) Review and comparison of computational integral imaging reconstruction. Int J Appl Eng Res 14(1):250–253

    Google Scholar 

  7. Baek E, Ho Y (2017) Real-time depth estimation method using hybrid camera system. Electron Imaging 5:118–123

    Article  Google Scholar 

  8. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. European conference on computer vision. Springer, Berlin, pp 404–417

    Google Scholar 

  9. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  10. Cho M, Javidi B (2009) Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels. J Disp Technol 5(2):61–65

    Article  Google Scholar 

  11. Cruz-Mota J, Bogdanova L, Paquier B, Bierlaire M, Thiran JP (2012) Scale invariant feature transform on the sphere: theory and applications. Int J Comput Vis 98(2):217–241

    Article  MathSciNet  MATH  Google Scholar 

  12. DaneshPanah M, Javidi B (2009) Profilometry and optical slicing by passive three-dimensional imaging. Opt Lett 34(7):1105–1107

    Article  Google Scholar 

  13. Diebel J, Thrun S (2005) An application of Markov random fields to range sensing. Proc. of Advances in Neural Information Processing systems, pp 291–298

  14. Ens J, Lawrence P (1993) An investigation of methods for determining depth from focus. IEEE Trans Pattern Anal Mach Intell 15(2):97–108

    Article  Google Scholar 

  15. Furukawa Y, Hernández C (2015) Multi-view stereo: a tutorial. Found Trends Comput Graph Vis 9(1–2):1–148

    Article  Google Scholar 

  16. Ghaneizad M, Aghajan H, Kavehvash Z (2016) Three-dimensional reconstruction of heavily occluded pedestrians using integral imaging. Proceedings of the 10th international conference on distributed smart camera. ACM, pp 1–7

  17. Ghaneizad M, Kavehvash Z, Mehrany KH, Tayaranian Hosseini SM (2017) A fast bottom-up approach toward three-dimensional human pose estimation using an array of cameras. Opt Lasers Eng 95:69–77

    Article  Google Scholar 

  18. Godard C, Mac Aodha O, Brostow G J (2017) Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 270–279

  19. Greengard A, Schechner Y, Piestun R (2006) Depth from diffracted rotation. Opt Lett 31:181–183

    Article  Google Scholar 

  20. Gur S, Wolf L (2019) Single image depth estimation trained via depth from defocus cues. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7683–7692

  21. Hazirbas C, Soyer S G, Staab M C, Leal-Taixé L, Cremers D (2018) Deep depth from focus. In: Asian conference on computer vision, pp 525–541

  22. He W, Hu J, Zhou C, Li C, Li W, Han Y (2018) A hierarchical model for embedded real-time stereo imaging. In: High-Performance Computing in Geoscience and Remote Sensing VIII 10792: 1079209. International Society for Optics and Photonics

  23. Hong S-H, Jang J-S, Javidi B (2004) Three-dimensional volumetric object reconstruction using computational integral imaging. Opt Express 12(3):483–491

    Article  Google Scholar 

  24. Hong S, Shin D, Lee B, Kim E (2012) Depth extraction of 3D objects using axially distributed image sensing. Opt Express 20(21):23044–23052

    Article  Google Scholar 

  25. Inoue K, Cho M (2019) Enhanced depth estimation of integral imaging using pixel blink rate. Opt Lasers Eng 115:1–6

    Article  Google Scholar 

  26. Izzat I, Li F (2015) Stereo-image quality and disparity/depth indications. U.S. Patent 9: 030-530

  27. Javidi B, Moon I, Yeom S (2006) Three-dimensional identification of biological microorganism using integral imaging. Opt Express 14:461–468

    Article  Google Scholar 

  28. Jeon H-G, Park J, Choe G, Park J, Bok Y, Tai Y-W, Kweon IS (2015) Accurate depth map estimation from a lenslet light field camera. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1547–1555

  29. Karami E, Prasad S, Shehata M (2017) Image matching using SIFT, SURF, BRIEF and ORB performance comparison for distorted images. CoRR arXiv: 1710.02726

  30. Komatsu S, Markman A, Javidi B (2018) Optical sensing and detection in turbid water using multidimensional integral imaging. Opt Lett 43:3261–3264

    Article  Google Scholar 

  31. Lee M-C, Inoue K, Kim C-S, Cho M (2016) Regeneration of elemental images in integral imaging for occluded objects using a preoptic camera. Chin Opt Lett 14(12):101–121

    Google Scholar 

  32. Levin A, Fergus R, Durand F, Freeman WT (2007) Image and depth from a conventional camera with a coded aperture. ACM Trans Graph 26(3):70-es

    Article  Google Scholar 

  33. Li X, Wang Y, Wang QH, Liu Y, Zhou X (2019) Modified integral imaging reconstruction and encryption using an improved SR reconstruction algorithm. Opt Lasers Eng 112:162–169

    Article  Google Scholar 

  34. Lippmann G (1908) Épreuves réversibles donnant la sensation du relief. J Phys Theor Appl 7(1):821–825

    Article  Google Scholar 

  35. Martínez-Corral M, Javidi B (2018) Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems. Adv Opt Photon 10(3):512–566

    Article  Google Scholar 

  36. Martínez-Usó A, Latorre-Carmona P, Sotoca JM, Pla F, Javidi B (2016) Depth estimation in integral imaging based on a maximum voting strategy. J Disp Technol 12(12):1716–1723

    Google Scholar 

  37. Matoba O, Tajahuerce E, Javidi B (2001) Real-time three-dimensional object recognition with multiple perspectives imaging. Appl Opt 40:3318–3325

    Article  Google Scholar 

  38. Moon L, Javidi B (2008) Three-dimensional visualization of objects in scattering medium by use of computational integral imaging. Opt Express 16:13080–13089

    Article  Google Scholar 

  39. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  40. Poozesh P, Sarrafi A, Mao Z, Avitabile P, Niezrecki C (2017) Feasibility of extracting operating shapes using phase-based motion magnification technique and stereo-photogrammetry. J Sound Vib 407:350–366

    Article  Google Scholar 

  41. Qu H, Piao Y, Xing L, Zhang M (2017) Segmentation-based occlusion removal technique for partially occluded 3D objects in integral imaging system. Appl Opt 56(9):151

    Google Scholar 

  42. Ren H, Ni LX, Li HF, Sang XZ, Gao X, Wang QH (2019) Review on tabletop true 3D display. J Soc Inf Disp 28(1):75–91

    Article  Google Scholar 

  43. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. 2011 international conference on computer vision, pp 2564–2571

  44. Saadat A (1998) Formulating depth information in an image. Sci Iran 4(4):183–189

    Google Scholar 

  45. Son JY, Son WH, Kim SK, Lee KH, Javidi B (2013) Threedimensional imaging for creating real-world-like environments. Proc IEEE 101(1):190–205

    Article  Google Scholar 

  46. Torralba A, Oliva A (2002) Depth estimation from image structure. IEEE Trans Pattern Anal Mach Intell 24(9):1226–1238

    Article  Google Scholar 

  47. Um G, Kim K, Ahn C, Lee L (2005) Three-dimensional scene reconstruction using multiview images and depth camera. Proc. of 3D digital imaging and modeling, pp 271–280

  48. Venkataraman K, Gallagher P, Jain A, Nisenzon S (2016) Pelican imaging Corp. Systems and methods for stereo imaging with camera arrays. U.S. Patent 9: 438,888

  49. Zhang L, Nayar S (2006) Projection defocus analysis for scene capture and image display. ACM Trans Graph 25(3):907–917

    Article  Google Scholar 

  50. Zhou C, Lin S, Nayar SK (2011) Coded aperture pairs for depth from defocus and defocus deblurring. Int J Comput Vis 93(1):53–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nezamabadi-pour.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzi, F.K., Nezamabadi-pour, H. Automatic objects’ depth estimation based on integral imaging. Multimed Tools Appl 81, 43531–43549 (2022). https://doi.org/10.1007/s11042-022-13221-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13221-3

Keywords

Navigation