Skip to main content
Log in

Glucuronidation of Entacapone, Nitecapone, Tolcapone, and Some Other Nitrocatechols by Rat Liver Microsomes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Nitrocatechol COMT inhibitors are a new class of bioactive compounds, for which glucuronidation is the most important metabolic pathway. The objective was to characterize the enzyme kinetics of nitrocatechol glucuronidation to improve the understanding and predicting of the pharmacokinetic behavior of this class of compounds.

Methods. The glucuronidation kinetics of seven nitrocatechols and 4-nitrophenol, the reference substrate for phenol UDP-glucuronosyltrans-ferase activity, was measured in liver microsomes from creosote-treated rats and determined by non-linear fitting of the experimental data to the Michaelis-Menten equation. A new method that combined densitometric and radioactivity measurement of the glucuronides separated by HPTLC was developed for the quantification.

Results. Apparent Km values for the nitrocatechols varied greatly depending on substitution pattern being comparable with 4-nitrophenol (0.11 mM) only in the case of 4-nitrocatechol (0.19 mM). Simple nitrocatechols showed two-fold Vmax values compared with 4-nitrophenol (68.6 nmol min−1 mg−1), while all disubstituted catechols exhibited much lower glucuronidation rate. Vmax/Km values were about 10 times higher for monosubstituted catechols compared to disubstituted ones. The kinetic parameters for COMT inhibitors were in the following order: Km nitecapone >> entacapone > tolcapone; Vmax nitecapone > entacapone > tolcapone; Vmax/Km tolcapone > nitecapone > entacapone.

Conclusions. Nitrocatechols can in principle be good substrates of UGTs. However, substituents may have a remarkable effect on the enzyme kinetic parameters. The different behaviour of nitecapone compared to the other COMT inhibitors may be due to its hydrophilic 5-substituent. The longer elimination half-life of tolcapone in vivo compared to entacapone could not be explained by glucuronidation kinetics in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Keränen, A. Gordin, M. Karlsson, K. Korpela, P. J. Pentikäinen, H. Rita, E. Schultz, L. Seppälä, and T. Wikberg. Eur. J. Clin. Pharmacol. 46:151-157 (1994).

    PubMed  Google Scholar 

  2. S. Kaakkola, A. Gordin, M. Järvinen, T. Wikberg, E. Schultz, E. Nissinen, P. J. Pentikäinen, and H. Rita. Clin. Neuropharmacol. 13:436-447 (1990).

    PubMed  Google Scholar 

  3. J. Dingemanse, K. Jorga, G. Zurcher, M. Schmitt, G. Sedek, M. Da Prada, and P. van Brummelen. Br. J. Clin. Pharmacol. 40:253-262 (1995).

    PubMed  Google Scholar 

  4. T. Lotta, J. Taskinen, R. Bäckström, and E. Nissinen. J. Comput.-Aided Mol. Design, 6:235-272 (1992).

    Google Scholar 

  5. P.-C. Wang, N. T. Buu, O. Kuchel, and J. Genest. J. Lab. Clin. Med. 101:141-151 (1983).

    PubMed  Google Scholar 

  6. T. Wikberg, A. Vuorela, P. Ottoila, and J. Taskinen. Drug Metab. Dispos. 21:81-92 (1993).

    PubMed  Google Scholar 

  7. T. Wikberg and J. Taskinen. Drug Metab. Dispos. 21:325-333 (1993).

    PubMed  Google Scholar 

  8. L. Nylund, P. Heikkilä, M. Hämeilä, L. Pyy, K. Linnainmaa, and M. Sorsa. Mutation Res. 265:223-236 (1992).

    PubMed  Google Scholar 

  9. L. Luukkanen, E. Elovaara, P. Lautala, J. Taskinen, and H. Vainio. Pharmacol. Toxicol. 80:152-158 (1997).

    PubMed  Google Scholar 

  10. O. Lowry, N. Rosebrough, L. Farr, and R. Randall. J. Biol. Chem. 193:265-275 (1951).

    PubMed  Google Scholar 

  11. P. Lautala, H. Salomies, E. Elovaara, and J. Taskinen. J. Planar Chromatogr. 9:413-417 (1996).

    Google Scholar 

  12. D. J. Clarke and B. Burchell. The Uridine Diphosphate Glucuronosyl-transferase Multigene Family: Function and Regulation. In F. C. Kauffman (ed.), Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, Springer-Verlag, Berlin Heidelberg, 1994, pp. 3-29.

    Google Scholar 

  13. H. Yin, G. Bennett, and J. P. Jones. Chem.-Biol. Interact. 90:47-58 (1994).

    PubMed  Google Scholar 

  14. A. Temellini, M. Franchi, L. Giuliani, and G. M. Pacifici. Xenobiotica 21:171-177 (1991).

    PubMed  Google Scholar 

  15. T. Wikberg, P. Ottoila, and J. Taskinen. Eur. J. Drug Metab. Pharmacokinet. 18:359-367 (1993).

    PubMed  Google Scholar 

  16. J. Magdalou, Y. Hochman, and D. Zakim. J. Biol. Chem. 257:13624-13629 (1982).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyrki Taskinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lautala, P., Kivimaa, M., Salomies, H. et al. Glucuronidation of Entacapone, Nitecapone, Tolcapone, and Some Other Nitrocatechols by Rat Liver Microsomes. Pharm Res 14, 1444–1448 (1997). https://doi.org/10.1023/A:1012133008134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012133008134

Navigation