Skip to main content
Log in

Glucuronidation of 4-tert-octylphenol in humans, monkeys, rats, and mice: an in vitro analysis using liver and intestine microsomes

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

4-tert-Octylphenol (4-tOP) is an endocrine-disrupting chemical. It is mainly metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, the glucuronidation of 4-tOP in humans, monkeys, rats, and mice was examined in an in vitro system using microsomal fractions. The kinetics of 4-tOP glucuronidation by liver microsomes followed the Michaelis–Menten model for humans and monkeys, and the biphasic model for rats and mice. The K m, V max, and CL int values of human liver microsomes were 0.343 µM, 11.6 nmol/min/mg protein, and 33.8 mL/min/mg protein, respectively. The kinetics of intestine microsomes followed the Michaelis–Menten model for humans, monkeys, and rats, and the biphasic model for mice. The K m, V max, and CL int values of human intestine microsomes were 0.743 µM, 0.571 nmol/min/mg protein, and 0.770 mL/min/mg protein, respectively. The CL int values estimated by Eadie–Hofstee plots were in the order of mice (high-affinity phase) (3.0) > humans (1.0) ≥ monkeys (0.9) > rats (high-affinity phase) (0.4) for liver microsomes, and monkeys (10) > mice (high-affinity phase) (5.6) > rats (1.4) > humans (1.0) for intestine microsomes. The percentages of the CL int values of intestine microsomes to liver microsomes were in the order of monkeys (27 %) > rats (high-affinity phase in liver microsomes) (7.9 %) > mice (high-affinity phase in liver and intestine microsomes) (4.2 %) > humans (2.3 %). These results suggest that the metabolic abilities of UGT enzymes expressed in the liver and intestine toward 4-tOP markedly differ among species and imply that species differences are strongly associated with the toxicities of alkylphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

4-tOP:

4-tert-Octylphenol

UGT:

UDP-glucuronosyltransferase

References

  • Ademollo N, Ferrara F, Delise M, Fabietti F, Funari E (2010) Nonylphenol and octylphenol in human breast milk. Environ Int 34:984–987

    Article  Google Scholar 

  • Asimakopoulos AG, Thomaidis NS, Koupparis MA (2012) Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol. Toxicol Lett 210:141–154

    Article  CAS  PubMed  Google Scholar 

  • Blake CA, Ashiru OA (1997) Disruption of rat estrous cyclicity by the environmental estrogen 4-tert-octylphenol. Proc Soc Exp Biol Med 216:446–451

    Article  CAS  PubMed  Google Scholar 

  • Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Exposure of the US population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116:39–44

    Article  CAS  PubMed  Google Scholar 

  • Certa H, Fedtke N, Wiegand HJ, Müller AM, Bolt HM (1996) Toxico kinetics of p-tert-octylphenol in male Wistar rats. Arch Toxicol 71:112–122

    Article  CAS  PubMed  Google Scholar 

  • Chen GW, Ding WH, Ku HY, Chao HR, Chen HY, Huang MC, Wang SL (2008) Alkylphenols in human milk and their relations to dietary habits in central Taiwan. Food Chem Toxicol 48:1939–1944

    Article  Google Scholar 

  • Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David A, Fenet H, Gomez E (2009) Alkylphenols in marine environments: distribution monitoring strategies and detection considerations. Mar Pollut Bull 58:953–960

    Article  CAS  PubMed  Google Scholar 

  • Gatidou G, Vassalou E, Thomaidis NS (2010) Bioconcentration of selected endocrine disrupting compounds in the Mediterranean mussel, Mytilus galloprovincialis. Mar Pollut Bull 60:2111–2116

    Article  CAS  PubMed  Google Scholar 

  • Hawker DW, Cumming JL, Neale PA, Bartkow ME, Escher BI (2011) A screening level fate model of organic contaminants from advanced water treatment in a potable water supply reservoir. Water Res 45:768–780

    Article  CAS  PubMed  Google Scholar 

  • Jonkers N, Knepper TP, de Voogt P (2001) Aerobic biodegradation studies of nonylphenol ethoxylates in river water using liquid chromatography-electrospray tandem mass spectrometry. Environ Sci Technol 35:335–340

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi M, Ito R, Sakui N, Okanouchi N, Saito K, Seto Y, Nakazawa H (2007) Stir-bar-sorptive extraction, with in situ deconjugation, and thermal desorption with in-tube silylation, followed by gas chromatography-mass spectrometry for measurement of urinary 4-nonylphenol and 4-tert-octylphenol glucuronides. Anal Bioanal Chem 388:391–398

    Article  CAS  PubMed  Google Scholar 

  • Kiang TK, Ensom MH, Chang TK (2005) UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther 106:97–132

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Bélanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JR, Ritter JK, Schachter H, Tephly TR, Tipton KF, Nebert DW (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7:255–269

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genom 15:677–685

    Article  CAS  Google Scholar 

  • Moffat GJ, Burns A, Van Miller J, Joiner R, Ashby J (2001) Glucuronidation of nonylphenol and octylphenol eliminates their ability to activate transcription via the estrogen receptor. Regul Toxicol Pharmacol 34:182–187

    Article  CAS  PubMed  Google Scholar 

  • Nimrod AC, Benson WH (1996) Environmental estrogenic effects of alkylphenol ethoxylates. Crit Rev Toxicol 26:335–364

    Article  CAS  PubMed  Google Scholar 

  • Nomura S, Daidoji T, Inoue H, Yokota H (2008) Differential metabolism of 4-n- and 4-tert-octylphenols in perfused rat liver. Life Sci 83:223–228

    Article  CAS  PubMed  Google Scholar 

  • Pedersen RT, Hill EM (2000) Identification of novel metabolites of the xenoestrogen 4-tert-octylphenol in primary rat hepatocytes. Chem Biol Interact 128:189–209

    Article  CAS  PubMed  Google Scholar 

  • Ritter JK (2000) Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact 129:171–193

    Article  CAS  PubMed  Google Scholar 

  • Stasinakis AS, Gatidou G, Mamais D, Thomaidis NS, Lekkas TD (2008) Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Res 42:1796–1804

    Article  CAS  PubMed  Google Scholar 

  • Tan BL, Ali Mohd M (2003) Analysis of selected pesticides and alkylphenols in human cord blood by gas chromatograph-mass spectrometer. Talanta 61:385–391

    Article  CAS  PubMed  Google Scholar 

  • Tukey RH, Strassburg CP (2000) Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 40:581–616

    Article  CAS  PubMed  Google Scholar 

  • UNEP/WHO (2013) State of the science of endocrine disrupting chemicals-2012. In: Becher G, Blumberg B, Bjerregaard P, Bornman R, Brandt I, Casey SC, Frouin H, Giudice LC, Heindel JJ, Iguchi T, Jobling S, Kidd KA, Kortenkamp A, Lind PM, Muir D, Ochieng R, Ropstad E, Ross PS, Skakkebaek NE, Toppari J, Vandenberg LN, Woodruff TJ, Zoeller RT (eds) Bergman Å. World Health Organization, United Nations Environment Programme (WHO-UNEP), Nairobi

    Google Scholar 

  • White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175–182

    CAS  PubMed  Google Scholar 

  • Ying GG (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (26281028) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobumitsu Hanioka.

Ethics declarations

Conflict of interest

The authors have no duality of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanioka, N., Isobe, T., Ohkawara, S. et al. Glucuronidation of 4-tert-octylphenol in humans, monkeys, rats, and mice: an in vitro analysis using liver and intestine microsomes. Arch Toxicol 91, 1227–1232 (2017). https://doi.org/10.1007/s00204-016-1800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1800-1

Keywords

Navigation