Skip to main content
Log in

Pelagic coelenterates and eutrophication: a review

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although eutrophication is a widespread problem in marine waters, its effects are often difficult to separate from normal fluctuations of pelagic coelenterate populations and from other anthropogenic changes due to industrial pollution, construction, introductions, global warming and overfishing. The least complex situations are in small coastal water bodies such as the Caribbean lagoons and Scandinavian fjords. Typically, the diversity of pelagic coelenterates decreases, but the biomass of a small number of species (such as the hydromedusae Aglantha digitale and Rathkea octopunctata and the scyphomedusae Aurelia aurita and Cassiopea spp.) may increase. Adaptations that may allow these species to survive under eutrophic conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebischer, N. J., J. C. Coulson & J. M. Colebrook, 1990. Parallel long-term trends across four marine trophic levels and weather. Nature (Lond.) 347: 753–755.

    Google Scholar 

  • Arai, M. N., 1988. Interactions of fish and pelagic coelenterates. Can. J. Zool. 66: 1913–1927.

    Google Scholar 

  • Arai, M. N., 1992. Active and passive factors affecting aggregations of hydromedusae: a review. Sci. mar. 56: 99–108.

    Google Scholar 

  • Arai, M. N., 1997a. Coelenterates in pelagic food webs. In Den Hartog, J. C. (ed.), Proceedings of the 6th International Conference of Coelenterate Biology, 1995. National Natuurhistorisch Museum, Leiden: 1–9.

    Google Scholar 

  • Arai, M. N., 1997b. A Functional Biology of Scyphozoa. Chapman & Hall, London: 316 pp.

    Google Scholar 

  • Ates, R. M. L., 1988. Medusivorous fishes, a review. Zool. Med. Leiden 62: 29–42.

    Google Scholar 

  • Avian, M. & L. Rottini Sandrini, 1994. History of scyphomedusae in the Adriatic Sea. Boll. Soc. Adriat. Sci. Trieste 75: 5–12.

    Google Scholar 

  • Azov, Y., 1991. EasternMediterranean-a marine desert? Mar. Pollut. Bull. 23: 225–232.

    Google Scholar 

  • Båmstedt, U., 1990. Trophodynamics of the scyphomedusae Aurelia aurita. Predation rate in relation to abundance, size and type of prey organism. J. Plankton Res. 12: 215–229.

    Google Scholar 

  • Båmstedt, U., H. Ishii & M. B. Martinussen, 1997. Is the scyphomedusa Cyanea capillata (L.) dependent on gelatinous prey for its early development? Sarsia 82: 269–273.

    Google Scholar 

  • Bayly, I. A. E., 1986. Ecology of the zooplankton of a meromictic antarctic lagoon with special reference to Drepanopus hispinosus (Copepoda: Calanoida). Hydrobiologia 140: 199–231.

    Google Scholar 

  • Behrends, G. & G. Schneider, 1995. Impact of Aurelia aurita medusae (Cnidaria, Scyphozoa) on the standing stock and community composition of mesozooplankton in the Kiel Bight (western Baltic Sea). Mar. Ecol. Prog. Ser. 127: 39–45.

    Google Scholar 

  • Benović, A. & D. LućIć, 1995. Appearance of hydromedusae in the northern Adriatic Sea in 1992 and 1993. Rapp. Comm. Int. Mer. Medit. 34: 203.

    Google Scholar 

  • Benović, A. & D. LućIć, 1996. Comparison of hydromedusae findings in the northern and southern Adriatic Sea. Sci. mar. 60: 129–135.

    Google Scholar 

  • Benović, A., D. Justić & A. Bender, 1987. Enigmatic changes in the hydromedusan fauna of the northern Adriatic Sea. Nature (Lond.) 326: 597–600.

    Google Scholar 

  • Berdnikov, S. V., V. V. Selyutin, V. V. Vasilchenko & J. F. Caddy, 1999. Trophodynamic model of the Black and Azov Sea pelagic ecosystem: consequences of the comb jelly, Mnemiopsis leidyi, invasion. Fish. Res. 42: 261–289.

    Google Scholar 

  • Beyer, F., 1958. A new, bottom-living trachymedusa from the Oslo Fjord: description of the species, and a general discussion of the life conditions and fauna of the fjord deeps. Nytt Mag. Zool. (Oslo) 6: 121–143.

    Google Scholar 

  • Beyer, F., 1968. Zooplankton, zoobenthos, and bottom sediments as related to pollution and water exchnage in the Oslofjord. Hellgoländer wiss. Meeresunters 17: 496–509.

    Google Scholar 

  • Beyer, F. & J. Indrehus, 1995. Effects of pollution and deep water exchange on the fauna along the bottom of Oslofjorden, Norway, based on material collected since 1952. Rep. Norsk Inst. Vannforsk. 621: Vol. 1: 1–143: Vol. 2: 1–153.

    Google Scholar 

  • Boicourt, W. C., M. Kuzmić & T. S. Hopkins, 1999. The Inland Sea: Circulation of Chesapeake Bay and the Northern Adriatic. Coastal Estuar. Stud. 55: 81–129.

    Google Scholar 

  • Bologa, A. S., N. Bodeanu, A. Petran, V. Tiganus & Yu. P. Zaitsev, 1995. Major modifications of the Black Sea benthic and planktonic biota in the last three decades. Bull. Inst. Ocean. (Monaco) Special No. 15: 85–110.

    Google Scholar 

  • Bonsdorff, E., E. M. Blomquist, J. Mattila & A. Norkko, 1997. Coastal eutrophication: Causes, consequences and perspectives in the archipelago areas of the northern Baltic Sea. Estuar. coast. shelf Sci. 44(Suppl. A): 63–72.

    Google Scholar 

  • Brandon, M. & C. E. Cutress, 1985. A new Dondice (Opisthobranchia: Favorinidae), predator of Cassiopea in southwest Puerto Rico. Bull. mar. Sci. 36: 139–144.

    Google Scholar 

  • Breitburg, D. L., K. A. Rose & J. H. Cowan, 1999. Linking water quality to larval survival: predation mortality of fish larvae in an oxygen-stratified water column. Mar. Ecol. Prog. Ser. 178: 39–54.

    Google Scholar 

  • Breitburg, D. L., T. Loher, C. A. Pacey & A. Gerstein, 1997. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol. Monogr. 67: 489–507.

    Google Scholar 

  • Brewer, R. H. & J. S. Feingold, 1991. The effect of temperature on the benthic stages of Cyanea (Cnidaria: Scyphozoa), and their seasonal distribution in the Niantic River estuary, Connecticut. J. exp. mar. Biol. Ecol. 152: 49–60.

    Google Scholar 

  • Brodeur, R. D., C. E. Mills, J. E. Overland, G. E. Walters & J. D. Schumacher, 1999. Evidence for a substantial increase in zooplankton in the Bering Sea, with possible links to climate change. Fish. Oceanogr. 8: 296–306.

    Google Scholar 

  • Buecher, E., 1997. Distribution and abundance of Pleurobrachia rhodopis (Cydippid Ctenophore) in the Bay of Villefranche-sur-Mer (Northwestern Mediterranean) studied using three different planktonic time series. Ann. Inst. oceanogr. 73: 173–184.

    Google Scholar 

  • Buecher, E., 1999. Appearance of Chelophyes appendiculata and Abylopsis tetragona (Cnidaria, Siphonophora) in the Bay of Villefranche, northwestern Mediterranean. J. Sea Res. 41: 295–307.

    Google Scholar 

  • Buecher, E., J. Goy, B. Planque, M. Etienne & S. Dallot, 1997. Long-term fluctuations of Liriope tetraphylla in Villefranche Bay between 1966 and 1993 compared to Pelagia noctiluca pullulations. Oceanol. Acta 20: 145–157.

    Google Scholar 

  • Caddy, J. F., 1993. Toward a comparative evaluation of human impacts on fishery ecosystems of enclosed and semi-enclosed seas. Rev. Fish. Sci. 1: 57–95.

    Google Scholar 

  • Caddy, J. F. & R. C. Griffiths, 1990. Recent trends in the fisheries and environment in the General Fisheries Council for the Mediterranean (GFCM) area. Gen. Fish. Counc. Mediterr. Stud. Rev. 63: 43–71.

    Google Scholar 

  • Calder, D., 1971. Hydroids and hydromedusae of southern Chesapeake Bay. Virginia Inst. mar. Sci. Spec. Papers in mar. Sci. 1: 1–125.

    Google Scholar 

  • Cargo, D. G. & D. R. King, 1990. Forecasting the abundance of the sea nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13: 486–491.

    Google Scholar 

  • Cary, L. R., 1917. Studies on the physiology of the nervous system of Cassiopea xamachana. Carnegie Inst. Wash. Publ. 251: 121–170.

    Google Scholar 

  • Cociasu, A., V. Diaconu, L. Popa, L. Buga, I. Nae, L. Dorogan & V. Malciu, 1997. The nutrient stock of the Romanian Shelf of the Black Sea during the last three decades. In Oszoy, E. & A. Mikaelyan (eds), Sensitivity of Change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 49–63.

    Google Scholar 

  • Collado Vides, L., L. Segura Puertas & M. Merino Ibarra, 1988. Observaciones sobre dos escifomedusas del genero Cassiopea en la laguna de Bojorquez, Quintana Roo, Mexico. Rev. Inv. Mar. 9: 21–27.

    Google Scholar 

  • Condon, R. H., M. B. Decker & J. E. Purcell, 2001. Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polyps (Chrysaora quinquecirrha). Hydrobiologia 451 (Dev. Hydrobiol. 155): 89–95.

    Google Scholar 

  • Degobbis, D., S. Fonda-Umani, P. Franco, A. Malej, R. Precali & N. Smodlaka, 1995. Changes in the northern Adriatic ecosystem and the hypertrophic appearance of gelatinous aggregates. Sci. Total Envir. 165: 43–58.

    Google Scholar 

  • Edwards, M., A. W. G. John, H. G. Hunt & J. A. Lindley, 1999. Exceptional influx of oceanic species into the North Sea late 1997. J. mar. biol. Ass. U.K. 79: 737–739.

    Google Scholar 

  • Eiane, K., D. L. Aksnes & J. Giske, 1997. The significance of optical properties in competition among visual and tactile planktivores: a theoretical study. Ecol. Model. 98: 123–136.

    Google Scholar 

  • Eiane, K., D. L. Aksnes, E. Bagoien & S. Kaartvedt, 1999. Fish or jellies – a question of visibility? Limnol. Oceanogr. 44: 1352–1357.

    Google Scholar 

  • Elmgren, R., 1989. Man's impact on the ecosystem of the Baltic Sea: Energy flows today and at the turn of the century. Ambio 18: 326–332.

    Google Scholar 

  • Erokhin, V. E., 1980. Invertebrates capacity for utilizing organic substances in sea water. Ekol. Morya 2: 3–15.

    Google Scholar 

  • Ferguson, J. C., 1988. Autoradiographic demonstration of the use of free amino acid by Sargasso Sea zooplankton. J. Plankton Res. 10: 1225–1238.

    Google Scholar 

  • Finenko, G. A., B. E. Anninsky, Z. A. Romanova, G. I. Abolmasova & A. E. Kideys, 2001. Chemical composition, respiration and feeding rates of the new alien ctenophore, Beroe ovata, in the Black Sea. Hydrobiologia 451 (Dev. Hydrobiol. 155): 177–186.

    Google Scholar 

  • Fitt, W. K. & K. Costley, 1998. The role of temperature in survival of the polyp stage of the tropical rhizostome jellyfish Cassiopea xamachana. J. exp. mar. Biol. Ecol. 222: 79–91.

    Google Scholar 

  • Fleck, J. & W. K. Fitt, 1999. Degrading mangrove leaves of Rhizophora mangle Linne provide a natural cue for settlement and metamorphosis of the upside down jellyfish Cassiopea xamachana Bigelow. J. exp. mar. Biol. Ecol. 234: 83–94.

    Google Scholar 

  • Fleck, J., W. K. Fitt & M. G. Hahn, 1999. A proline-rich peptide originating from decomposing mangrove leaves is one natural metamorphic cue of the tropical jellyfish Cassiopea xamachana. Mar. Ecol. Prog. Ser. 183: 115–124.

    Google Scholar 

  • Fransz, H. G., J. M. Colebrook, J. C. Gamble & M. Krause, 1991. The zooplankton of the North Sea. Neth. J. Sea Res. 28: 1–52.

    Article  Google Scholar 

  • Fraser, J. H., 1967. Siphonophora in the plankton to the north and west of the British Isles. Proc. r. Soc. Edinb. Sect. B (Biol.) 70: 1–30.

    Google Scholar 

  • Fraser, J. H., 1969. Variability in the oceanic content of plankton in the Scottish area. Prog. Oceanogr. 5: 149–159.

    Google Scholar 

  • Fraser, J. H., 1970. The ecology of the ctenophore Pleurobrachia pileus in Scottish waters. J. Cons. int. Explor. Mer 33: 149–168.

    Google Scholar 

  • Friligos, N., 1982. Some consequences of the decomposition of organic matter in the Elefsis Bay, an anoxic basin. Mar. Poll. Bull. 13: 103–106.

    Google Scholar 

  • Garcia, J. R. & J. M. Lopez, 1989. Seasonal patterns of phytoplankton productivity, zooplankton abundance and hydrological conditions in Laguna Joyuda, Puerto Rico. Sci. mar. 53: 625–631.

    Google Scholar 

  • Gomez-Aguirre, S., 1980. Variacion estacional de grandes medusas (Scyphozoa) en un sistema de lagunas costeras del sur del Golfo de Mexico (1977/1978). Bol. Inst. Oceanogr. 29: 183–185.

    Google Scholar 

  • Gomoiu, M.-T., 1980. Ecological observations on the jellyfish Aurelia aurita (L.) populations. Cercet. Mar. 13: 91–102.

    Google Scholar 

  • Gomoiu, M.-T., 1981. Some problems concerning actual ecological changes in the Black Sea. Cercet. Mar. 14: 109–127.

    Google Scholar 

  • González, A. C., 1979. Contribución al conocimiento de las medusas (Coelenterata) de la Laguna de Términos, Camp. México. An. Cent. Cienc. Mar Limnol. Univ. Nac. Auton. Mex. 6: 183–188.

    Google Scholar 

  • Goy, J., P. Morand & M. Etienne, 1989. Long-term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean Sea. Prediction by climatic variables. Deep Sea Res. 36: 269–279.

    Google Scholar 

  • Graham, W. M., 2001. Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linné) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydrobiologia 451 (Dev. Hydrobiol. 155): 97–111.

    Google Scholar 

  • Graham, W. M., Pagès, F. & W. M. Hamner, 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451 (Dev. Hydrobiol. 155): 199–212.

    Google Scholar 

  • Greve, W., 1994. The 1989 German Bight invasion of Muggiaea atlantica. ICES (Int. Counc. Explor. Sea) J. mar. Sci. 51: 355–358.

    Google Scholar 

  • Gucu, A. C., 1997. Role of fishing in the Black Sea ecosystem. In Ozsoy, E. & A. Mikaelyan (eds), Sensitivity to change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 149–162.

    Google Scholar 

  • Haahtela, I. & J. Lassig, 1967. Records of Cyanea capillata (Scyphozoa) and Hyperia galba (Amphipoda) from the Gulf of Finland and the northern Baltic. Ann. Zool. Fenn. 4: 469–471.

    Google Scholar 

  • Hanninen, J., I. Vuorinen & P. Hjelt, 2000. Climatic changes in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnol. Oceanogr. 45: 703–710.

    Google Scholar 

  • Hansen, K. V., 1951. On the diurnal migration of zooplankton in relation to the discontinuity layer. J. Cons. Cons. int. Explor. Mer 17: 231–241.

    Google Scholar 

  • Hay, S. J., J. R. G. Hislop & A. M. Shanks, 1990. North Sea scyphomedusae: summer distribution, estimated biomass and significance particularly for 0-group gadoid fish. Neth. J. Sea Res. 25: 113–130.

    Google Scholar 

  • Hernroth, L. & H. Ackefors, 1979. The zooplankton of the Baltic proper. Report Institute of Marine Research Fishery Board of Sweden 2: 1–60.

    Google Scholar 

  • Hsieh, Y-H.P., F-M. Leong & J. Rudloe, 2001. Jellyfish as food. Hydrobiologia 451 (Dev. Hydrobiol. 155): 11–17.

    Google Scholar 

  • Ishii, H. & F. Tanaka, 2001. Food and feeding of Aurelia aurita in Tokyo Bay with an analysis of stomach contents and a measurement of digestion times. Hydrobiologia 451 (Dev. Hydrobiol. 155): 311–320.

    Google Scholar 

  • Ishii, H., S. Tadokoro, H. Yamanaka & M. Omori, 1995. Population dynamics of the jellyfish, Aurelia aurita in Tokyo Bay in 1993 with determination of ATP-related compounds. Bull. Plankton Soc. Japan 42: 171–176.

    Google Scholar 

  • Janas, U. & Z. Witek, 1993. The occurrence of medusae in the southern Baltic and their importance in the ecosystem, with special emphasis on Aurelia aurita. Oceanologia 34: 69–84.

    Google Scholar 

  • Justić, D., N. N. Rabalais, R. E. Turner & Q. Dortch, 1995. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuar. coast. shelf Sci. 40: 339–356.

    Google Scholar 

  • Keister, J. E., E. D. Houde & D. L. Breitburg, 2000. Effects of bottom-layer hypoxia on abundance and depth distributions of organisms in Patuxent River, Chesapeake Bay. Mar. Ecol. Prog. Ser. 205: 43–59.

    Google Scholar 

  • Kennish, M. J., 1997. Pollution Impacts on Marine Biotic Communities. CRC Press, Boca Raton, Florida: 296 pp.

    Google Scholar 

  • Kideys, A. E., 1994. Recent dramatic changes in the Black Sea ecosystem: the reason for the sharp decline in Turkish anchovy fisheries. J. mar. Syst. 5: 171–181.

    Google Scholar 

  • Kideys, A. E., A. V. Kovalev, G. Shulman, A. Gordina & F. Bingel, 2000. A review of zooplankton investigations of the Black Sea over the last decade. J. mar. Syst. 24: 355–371.

    Google Scholar 

  • Kovalev, A. V. & S. A. Piontkovski, 1998. Interannual changes in the biomass of the Black Sea gelatinous zooplankton. J. Plankton Res. 20: 1377–1385.

    Google Scholar 

  • Kramp, P. L. & D. Damas, 1925. Les méduses de la Norvège. Introduction et Partie speciale I. Vidensk. Medd. Dan. Naturhist. Foren. 80: 217–323, pl. 35.

    Google Scholar 

  • Kremer, P., 1994. Patterns of abundance for Mnemiopsis in US coastal waters: a comparative overview. ICES J. mar. Sci. 51: 347–354.

    Google Scholar 

  • Kuhl, H., 1962. Die Hydromedusen der Elbmündung. Abh. Verh. naturwiss. Verh. Hamb. 6: 209–232.

    Google Scholar 

  • Kuwabara, R., S. Sato & N. Noguchi, 1969. Ecological studies on the medusa, Aurelia aurita Lamarck-I. Distribution of Aurelia patches in the north-east region of Tokyo Bay in summer 1966 and 1967. Bull. Jpn. Soc. Sci. Fish. 35: 156–162 (in Japanese with English abstract).

    Google Scholar 

  • Lapointe, B. E. & M. W. Clark, 1992. Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 15: 465–476.

    Google Scholar 

  • Lapointe, B. E., D. A. Tomasko & W. R. Matzie, 1994. Eutrophication and trophic state classification of seagrass communities in the Florida Keys. Bull. mar. Sci. 54: 696–717.

    Google Scholar 

  • Larson, R. J., 1997. Feeding behaviour of Caribbean scyphomedusae: Cassiopea frondosa (Pallas) and Cassiopea xamachana Bigelow. Uitg. Natuurwet. Studiekring Caraibisch (Stud. Nat. Hist. Carribean Region) 73: 43–54.

    Google Scholar 

  • Legović, T. & D. Justić, 1997. When do phytoplankton blooms cause the most intense hypoxia in the northern Adriatic Sea? Oceanol. Acta 20: 91–99.

    Google Scholar 

  • Lin, A. L. & P. L. Zubkoff, 1977. Enyymes associated with carbohydrate metabolism of scyphistomae of Aurelia aurita and Chrysaora quinquecirrha (Scyphozoa: Semaeostomae). Comp. Biochem. Physiol. 57B: 303–308.

    Google Scholar 

  • Liu, P., Y. Yu & C. Liu, 1991. Studies on the situation of pollution and countermeasures of control of the oceanic environment in Zhoushan fishing ground – the largest fishing ground in China. Mar. Pollut. Bull. 23: 281–288.

    Google Scholar 

  • Lucas, C. H., 1996. Population dynamics of Aurelia aurita (Scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction. J. Plankton Res. 18: 987–1007.

    Google Scholar 

  • Lucas, C. H., A. G. Hirst & J. A. Williams, 1997. Plankton dynamics and Aurelia aurita production in two contrasting ecosystems: comparisons and consequences. Estuar. coast. mar. Sci. 45: 209–219.

    Google Scholar 

  • Maaden, H. van der, 1942. Beobachtungen über Medusen am Strande von Katwijk aan Zee (Holland) in den Jahren 1933– 1937. Arch Neerl. Zool. 6: 347–362.

    Google Scholar 

  • Malakoff, D., 1998. Death by suffocation in the Gulf of Mexico. Science (Wash. D. C.) 281: 190–192.

    Google Scholar 

  • Malone, T. C., A. Malej, L. W. Harding Jr., N. Smodlaka & R. E. Turner (eds), 1999. Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea. Coastal estuar. Stud. 55: 1–381.

  • Margonski, P. & K. Horbowa, 1996. Vertical distribution of cod eggs and medusae in the Bornholm Basin. Medd. Havsfiskelab. Lysekil 327: 7–17.

    Google Scholar 

  • Matsueda, N., 1969. Presentation of Aurelia aurita at thermal power station. Bull. mar. Biol. Stn. Asamushi 13: 187–191.

    Google Scholar 

  • Mayer, A. G., 1910. Medusae of the World Volume III The Scyphomedusae. Carnegie Institution of Washington, Washington: 735 pp.

    Google Scholar 

  • Merino, M., A. Gonzalez, E. Reyes, M. Gallegos & S. Czitrom, 1992. Eutrophication in the lagoons of Cancun, Mexico. Sci. Total Envir. Suppl.: 861–870.

  • Mianzan, H. W., N. Mari, B. Prenski & F. Sanchez, 1996. Fish predation on neritic ctenophores from the Argentine continental shelf: a neglected food resource? Fish. Res. 27: 69–79.

    Google Scholar 

  • Mianzan, H., M. Pájaro, G. Alvarez Colombo & A. Madirolas, 2001. Feeding on survival-food: gelatinous plankton as a source of food for anchovies. Hydrobiologia 451 (Dev. Hydrobiol. 155): 45–53.

    Google Scholar 

  • Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451 (Dev. Hydrobiol. 155): 55–68.

    Google Scholar 

  • Mirza, F. B. & J. S. Gray, 1981. The fauna of benthic sediments from the organically enriched Oslofjord, Norway. J. exp. mar. Biol. Ecol. 54: 181–207.

    Google Scholar 

  • Möller, H., 1980. A summer survey of large zooplankton, particularly scyphomedusae, in North Sea and Baltic. Meeresforsch. 28: 61–68.

    Google Scholar 

  • Mutlu, E., 1999. Distribution and abundance of ctenophores and their zooplankton food in the Black Sea. II Mnemiopsis leidyi. Mar. Biol. 135: 603–613.

    Google Scholar 

  • Mutlu, E. & F. Bingel, 1999. Distribution and abundance of ctenophores, and their zooplankton food in the Black sea. I. Pleurobrachia pileus. Mar. Biol. 135: 589–601.

    Google Scholar 

  • Mutlu, E., F. Bingel, A. C. Gucu, V. V. Melnikov, U. Niermann, N. A. Ostr & V. E. Zaika, 1994. Distribution of the new invader Mnemiopsis sp. and the resident Aurelia aurita and Pleurobrachia pileus populations in the Black Sea in the years 1991–1993. ICES J. mar. Sci. 51: 407–421.

    Google Scholar 

  • Nehring, D., 1992. Eutrophication in the Baltic Sea. Sci. Total Environ. Suppl.: 673–682.

  • Nicholas, K. R. & C. L. J. Frid, 1999. Occurrence of hydromedusae in the plankton off Northumberland (western central North Sea) and the role of planktonic predators. J. mar. biol. Ass. U. K. 79: 979–992.

    Google Scholar 

  • Nielsen, A. S., A. W. Pedersen & H. U. Riisgard, 1997. Implications of density driven currents for interaction between jellyfish (Aurelia aurita) and zooplankton in a Danish fjord. Sarsia 82: 297–305.

    Google Scholar 

  • Niermann, U. & W. Greve, 1997. Distribution and fluctuation of dominant zooplankton species in the southern Black Sea in comparison to the North Sea and Baltic Sea. In Özsoy, E. & A. Mikaelyan (eds), Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 65–77.

    Google Scholar 

  • Niermann, U., F. Bingel, G. Ergun & W. Greve, 1998. Fluctuation of dominant mesozooplankton species in the Black Sea, North Sea and the Baltic Sea: is a general trend recognisable? Tr. J. Zool. 22: 63–81.

    Google Scholar 

  • Nixon, S. W., 1995. Coastal marine eutrophication: a definition, social causes and future concerns. Ophelia: 199–219.

  • Nomura, H. & T. Ishimaru, 1998. Monitoring the occurrence of medusae and ctenophores in Tokyo Bay, central Japan, in recent 15 years. Umi no Kenkyu 7: 99–104.

    Google Scholar 

  • Nomura, H. & M. Murano, 1992. Seasonal variation of meso-and macroplankton in Tokyo Bay, central Japan. La Mer 30: 49–56.

    Google Scholar 

  • Olesen, N. J., 1995. Clearance potential of jellyfish Aurelia aurita, and predation impact on zooplankton in a shallow cove. Mar. Ecol. Prog. Ser. 124: 63–72.

    Google Scholar 

  • Olesen, N. J., K. Frandsen & H. U. Riisgard, 1994. Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Mar. Ecol. Prog. Ser. 105: 9–18.

    Google Scholar 

  • Olesen, N. J., J. E. Purcell & D. K. Stoecker, 1996. Feeding and growth of ephyrae of scyphomedusae Chrysaora quinquecirrha. Mar. Ecol. Prog. Ser. 137: 149–159.

    Google Scholar 

  • Omori, M., H. Ishii & A. Fujinaga, 1995. Life history strategy of Aurelia aurita (Cnidaria, Scyphomedusae) and its impact on the zooplankton community of Tokyo Bay. ICES J. mar. Sci. j52: 597–603.

    Google Scholar 

  • Omori, M. & E. Nakano, 2001. Jellyfish fisheries in southeast Asia. Hydrobiologia 451 (Dev. Hydrobiol. 155): 19–26.

    Google Scholar 

  • Otsubo, K., A. Harashima, T. Miyazaki, Y. Yasuoka & K. Muraoka, 1991. Field survey and hydraulic study of 'Aoshio' in Tokyo Bay. Mar. Pollut. Bull. 23: 51–55.

    Google Scholar 

  • Paerl, H.W., 1995. Coastal eutrophication in relation to atmospheric nitrogen deposition: Current perspectives. Ophelia 41: 237–259.

    Google Scholar 

  • Palmén, E., 1953. Seasonal occurrence of ephyrae and subsequent instars of Aurelia aurita (L.) in the shallow waters of Tvärminne, S. Finland. Arch. Soc. Zool.-Bot. Fenn.' Vanamo' 8: 122–131.

    Google Scholar 

  • Panayotidis, P., G. Anagnostaki & I. Siokou-Frangou, 1986. Variations saisonnieres du diametre et de la biomasse de la scyphoméduse Aurelia aurita Lam., dans la Baie d'Elefsis (Saronikos, Mer Egee). Nova Thalassia 8,Suppl. 2: 89–92.

    Google Scholar 

  • Panayotidis, P., E. Papathanassiou, I. Siokou-Frangou & O. Gotis-Skretas, 1985. Etude de la population de la scyphomeduse Aurelia aurita Lam. dans la Baie d'Elefsis (Saronikos, Mer Egee). Rapp. Proces-Verb. Reu. Comm. Int. Explor. Sci. Mer. Medit. 29: 191–193.

    Google Scholar 

  • Papathanassiou, E., P. Panayotidis & K. Anagnostaki, 1986. Reproduction and growth of Aurelia aurita in Elefsis Bay. Nova Thalassia 8,Suppl. 2: 83–88.

    Google Scholar 

  • Papathanassiou, E., P. Panayotidis & K. Anagnostaki, 1987. Notes on the biology and ecology of the jellyfish Aurelia aurita Lam. in Elefsis Bay (Saronikos Gulf, Greece). Mar. Ecol. (Pubbl. Stn Zool. Napoli I) 8: 49–58.

    Google Scholar 

  • Prodanov, K., K. Mikhailov, G. Daskalov, K. Maxim, A. Chashchin, A. Arkhipov, V. Shlyakhov, & E. Ozdamar, 1997. Environmental impact on fish resources in the Black Sea. In Ozsoy, E. & A. Mikaelyan (eds), Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 163–181.

    Google Scholar 

  • Purcell, J. E., 1992. Effects of predation by the scyphomedusan Chrysaora quinquecirrha on zooplankton populations in Chesapeake Bay, U.S.A. Mar. Ecol. Prog. Ser. 87: 65–76.

    Google Scholar 

  • Purcell, J. E. & M. N. Arai, 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451 (Dev. Hydrobiol. 155): 27–44.

    Google Scholar 

  • Purcell, J. E. & J. H. Cowan, 1995. Predation by the scyphomedusan Chrysaora quinquecirrha on Mnemiopsis leidyi ctenophores. Mar. Ecol. Prog. Ser. 129: 63–70.

    Google Scholar 

  • Purcell, J. E. & D. A. Nemazie, 1992. Quantitative feeding ecology of the hydromedusan Nemopsis bachei in Chesapeake Bay. Mar. Biol. 113: 305–311.

    Google Scholar 

  • Purcell, J. E., A. Malej & A. Benović, 1999a. Potential links of jellyfish to eutrophication and fisheries. Coastal estuar. Stud. 55: 241–263.

    Google Scholar 

  • Purcell, J. E., T. A. Shiganova, M. B. Decker & E. D. Houde, 2001a. The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin. Hydrobiologia 451 (Dev. Hydrobiol. 155): 145–175.

    Google Scholar 

  • Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999b. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Mar. Ecol. Prog. Ser. 180: 187–196.

    Google Scholar 

  • Purcell, J. E., D. L. Breitburg, M. B. Decker, W. M. Graham, M. J. Youngbluth & K. A. Raskoff, 2001b. Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. In Rabalais, N. N. & R. E. Turner (eds), Coastal Hypoxia: consequences for living resources and ecosystems. American Geophysical Union. Coastal estuar. Stud. 58: 77–100.

  • Rabalais, N. N. & R. E. Turner (eds), 2001. Coastal hypoxia: consequences for living resources and ecosystems. American Geophysical Union. Coastal estuar. Stud. 58: 463 pp.

  • Rabalais, N. N., R. E. Turner, D. Justić, Q. Dortch, W. J Wiseman & B. K. S. Gupta, 1996. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19: 386–407.

    Google Scholar 

  • Reid, P. C., M. De Fatima Borges & E. Svendsen, 2001. A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery. Fish. Res. 50: 163–171.

    Google Scholar 

  • Reyes, E. & M. Merino, 1991. Diel dissolved oxygen dynamics and eutrophication in a shallow, well-mixed tropical lagoon (Cancun, Mexico). Estuaries 14: 372–381.

    Google Scholar 

  • Richardson, K. & B. B. Jorgensen, 1996. Eutrophication: definition, history and effects. Coastal estuar. Stud. 52: 1–19.

    Google Scholar 

  • Riisgard, H. U., C. Jurgensen & F. O. Andersen, 1996. Case study: Kertinge Nor. Coastal estuar. Stud. 52: 205–220.

    Google Scholar 

  • Riisgard, H. U., P. Bondo Christensen, N. J. Olesen, J. K. Petersen, M. M. Moller & P. Andersen, 1995. Biological structure in a shallow cove (Kertinge Nor, Denmark) – Control by benthic nutrient fluxes and suspension-feeding ascidians and jellyfish. Ophelia 41: 329–344.

    Google Scholar 

  • Roden, C. L., R. R. Lohoefener, C. M. Rogers, K. D. Mullin & B. W. Hoggard, 1990. Aspects of the ecology of the moon jellyfish, Aurelia aurita, in the northern Gulf of Mexico. Northeast Gulf Sci. 11: 63–67.

    Google Scholar 

  • Roginskaya, I. S., 1988. On possible relationship between Nudibranchia predation on the polyps of Aurelia aurita (L) and variations in the abundance of this jellyfish in the Black Sea. Ekol. Morya 30: 58–60 [Russian with English abstract].

    Google Scholar 

  • Rosenberg, R., J. S. Gray, A. B. Josefson & T. H. Pearson, 1987. Petersen's benthic stations revisited. II. Is the Oslofjord and eastern Skagerrak enriched? J. exp. mar. Biol. Ecol. 105: 219–251.

    Google Scholar 

  • Rottini-Sandrini, L. & M. Avian, 1986. Workshop on jellyfish in the Mediterranean Sea. Nova Thalassia 8(Suppl. 2): 1–191.

    Google Scholar 

  • Runge, J. A., P. Pepin & W. Silvert, 1987. Feeding behavior of the Atlantic mackerel Scomber scombrus on the hydromedusa Aglantha digitale. Mar. Biol. 94: 329–333.

    Google Scholar 

  • Russell, F. S., 1939. Hydrographical and biological conditions in the North Sea as indicated by plankton organisms. J. Cons. Cons. int. Explor. Mer 14: 171–192.

    Google Scholar 

  • Sandström, O. & T. Sörlin, 1981. Production ecology in the Northern Baltic. Hydrobiologia 76: 87–96.

    Google Scholar 

  • Schulz, S., 1989. Changes in the Baltic pelagic ecosystem. In Klekowski, R. Z., E. Styczyñska & L. Falkowski (eds), Proceedings of the Twenty-first European Marine Biology Symposium. Institute of Oceanology. Polish Academy of Sciences, Warsaw: 463–471.

    Google Scholar 

  • Schulz, S., G. Ertebjerg, G. Behrends, G. Breuel, P. Ciszewski, U. Horstmann, K. Kononen, E. Kostrichkina, J.-M. Leppanen, F. Mohlenberg, O. Dandstrom, M. Viitasalo & T. Willen, 1992. The present state of the Baltic Sea pelagic ecosystem-an assessment. In Colombo G., I. Ferrari, V. U. Ceccherelli & R. Rossi (eds), Marine Eutrophication and Population Dynamics. Olsen & Olsen, Fredenborg: 35–44.

    Google Scholar 

  • Scott, A., 1914. The mackerel fishery off Walney in 1913. Proc. Trans. Liverpool Biol. Soc. 28: 109–115.

    Google Scholar 

  • Scott, A., 1924. Food of the Irish Sea herring in 1923. Proc. Trans. Liverpool Biol. Soc. 38: 115–119.

    Google Scholar 

  • Segerstråle, S. G., 1951. The recent increase in salinity off the coasts of Finland and its influence upon the fauna. J. Cons. perm. int. Explor. Mer 17: 103–110.

    Google Scholar 

  • Shick, J. M., 1975. Uptake and utilization of dissolved glycine by Aurelia aurita scyphistomae: temperature effects on the uptake process; nutritional role of dissolved amino acids. Biol. Bull.: 117–140.

  • Shiganova, T. A., 1997. Mnemiopsis leidyi abundance in the Black Sea and its impact on the pelagic community. In Ozsoy, E. & A. Mikaelyan (eds), Sensitivity to change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 117–129.

    Google Scholar 

  • Shiganova, T. A., 1998. Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure. Fish. Oceanogr. 7: 305–310.

    Google Scholar 

  • Shiganova, T. A. & Y. V. Bulgakova, 2000. Effects of gelatinous plankton on Black Sea and Sea of Azov fish and their food resources. ICES J. mar. Sci. 57: 641–648.

    Google Scholar 

  • Shiganova, T. A., Yu. V. Bulgakova, S. P. Volovik, Z. A. Mirzoyan & S. I. Dudkin, 2001. The new invader Beroe ovata Mayer, 1912 and its effect on the ecosystem in the northeastern Black Sea. Hydrobiologia 451 (Dev. Hydrobiol. 155): 187–197.

    Google Scholar 

  • Shiganova, T. A., A. E. Kideys, A. C. Gucu, U. Niermann & V. S. Khoroshilov, 1998. Changes in species diversity and abundance of the main components of the Black Sea community during the last decade. In Ivanov, I. I. & T. Oguz (eds), Ecosystem Modeling as a Management Tool for the Black Sea, Volume 1. Kluwer Academic Publishers, Dordrecht, The Netherlands: 171–188.

    Google Scholar 

  • Shuntov, V. P., E. P. Dulepova, V. I. Radchenko & V. V. Lapko, 1996. New data about communities of plankton and nekton of the far-eastern seas in connection with climate-oceanological reorganization. Fish. Oceanogr. 5: 38–44.

    Google Scholar 

  • Shushkina, E. A. & E. I. Musayeva, 1983. The role of jellyfish in the energy system of Black Sea plankton communities. Oceanology 23: 92–96.

    Google Scholar 

  • Shushkina, E. A. & M. Ye. Vinogradov, 1991. Long-term changes in the biomass of plankton in open areas of the Black Sea. Oceanology 31: 716–721.

    Google Scholar 

  • Smedstad, O. M., 1972. On the biology of Aglantha digitale rosea (Forbes) [Coelenterata: Trachymedusae] in the inner Oslofjord. Norw. J. Zool. 20: 111–135.

    Google Scholar 

  • Smith, H. G., 1936. Contribution to the anatomy and physiology of Cassiopea frondosa. Carnegie Inst. Wash. Publ. 475: 19–52.

    Google Scholar 

  • Stoecker, D. K., A. E. Michaels & L. H. Davis, 1987a. Grazing by the jellyfish, Aurelia aurita, on microzooplankton. J. Plankton Res. 9: 901–915.

    Google Scholar 

  • Stoecker, D. K., P. G. Verity, A. E. Michaels & L. H. Davis, 1987b. Feeding by larval and post-larval ctenophores onmicrozooplankton. J. Plankton Res. 9: 667–683.

    Google Scholar 

  • Sugiura, Y., 1980. On the seasonal appearance of the medusae from Harumi, Tokyo Harbour. Dokkyo Univ. Bull. lib. Arts 15: 10–15. (in Japanese).

    Google Scholar 

  • Sullivan, B. K., D. Van Keuren & M. Clancy, 2001. Timing and size of blooms of the ctenophore Mnemiopsis leidyi in relation to temperature in Narragansett Bay, RI. Hydrobiologia 451 (Dev. Hydrobiol. 155): 113–120.

    Google Scholar 

  • Sverdrup, A., 1921. Planktonundersokelser fra Kristianiafjorden, Hydromeduser. Videnskapsselskapets Skrifter I Mat.-Naturv. Klasse 1, 1–50, pl. 1–4.

    Google Scholar 

  • Swanberg, N., 1974. The feeding behavior of Beroe ovata. Mar. Biol. 24: 69–76.

    Google Scholar 

  • Tatara, K., 1991. Utilization of the biological production in eutrophicated sea areas by commercial fisheries and the environmental quality standard for fishing ground. Mar. Pollut. Bull. 23: 315–319.

    Google Scholar 

  • Thuesen, E. V. & J. J. Childress, 1994. Oxygen consumption rates and metabolic enzyme activities of oceanic California medusae in relation to body size and habitat depth. Biol. Bull. 187: 84–98.

    Google Scholar 

  • Toyokawa, M., T. Inagaki & M. Terazaki, 1997. Distribution of Aurelia aurita (Linnaeus, 1758) in Tokyo Bay; observations with echosounder and plankton net. In Den Hartog, J. C. (ed.), Proceedings of the 6th International Conference on Coelenterate Biology, 1995. National Natuurhistorisch Museum, Leiden: 483–490.

    Google Scholar 

  • Toyokawa, M. & M. Terazaki, 1994. Seasonal variation of medusae and ctenophores in the innermost part of Tokyo Bay. Bull. Plankton Soc. Jpn. 41: 71–75.

    Google Scholar 

  • Toyokawa, M., T. Furota & M. Terazaki, 2000. Life history and seasonal abundance of Aurelia aurita medusae in Tokyo Bay, Japan. Plankton Biol. Ecol. 47: 48–58.

    Google Scholar 

  • Turner, R. E., N. Qureshi, N. N. Rabalais, Q. Dortch, D. Justi§, R. F. Shaw & J. Cope, 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proc. natl. Acad. Sci. 95: 13048–13051.

    PubMed  Google Scholar 

  • Tviete, S., 1969. Zooplankton and the discontinuity layer in relation to echo traces in the Oslofjord. Fiskeridir. skr. Ser. Havunders. 15: 25–35.

    Google Scholar 

  • Uchima, M., 1988. Gut content analysis of neritic copepods Acartia omorii and Oithona davisae by a new method. Mar. Ecol. Prog. Ser. 48: 93–97.

    Google Scholar 

  • UNEP, 1984. Workshop on Jellyfish Blooms in the Mediterranean. (Athens, 31 October–4 November 1983). United Nations Environment Programme, Mediterranean Action Plan: 221 pp.

  • UNEP, 1991. Jellyfish Blooms in the Mediterranean, Proceedings of the IIWorkshop on Jellyfish Blooms in the Mediterranean Sea (Trieste, 2–5 September 1987). Mediterranean Action Plan Tech. Rep. Ser. 47: 1–320.

    Google Scholar 

  • Uye, S-I., 1994. Replacement of large copepods by small ones with eutrophication of embayments: cause and consequence. Hydrobiologia 292/293: 513–519.

    Google Scholar 

  • Uye, S-I. & T. Kasuya, 1999. Functional roles of ctenophores in the marine coastal ecosystem. In Okutani T., S. Ohta & R. Ueshima (eds), Update Progress in Aquatic Invertebrate Zoology. Tokai University Press, Tokyo: 57–76 (Japanese with English abstract).

    Google Scholar 

  • Uye, S-I. & T. Shimazu, 1997. Geographical and seasonal variations in abundance, biomass and estimated production rates of mesoand macrozooplankton in the Inland Sea of Japan. J. Oceanogr. 53: 529–538.

    Google Scholar 

  • Uye, S-I, N. Iwamoto, T. Ueda, H. Tamaki & K. Nakahira, 1999. Geographical variations in the trophic structure of the plankton community along a eutrophic-mesotrophic-oligotrophic transect. Fish. Oceanogr. 8: 227–237.

    Google Scholar 

  • Verwey, J., 1942. Die Periodizitat im Auftreten und die aktiven und passiven Bewegungen der Quallen. Arch. Neerl. Zool. 6: 363–468.

    Google Scholar 

  • Vinogradov, M. Ye. & E. A. Shushkina, 1982. Estimate of the concentration of Black Sea jellyfish, ctenophores and Calanus, based on observations from the Argus submersible. Oceanology 22: 351–355.

    Google Scholar 

  • Vinogradov, M. E., M. V. Flint & E. A. Shushkina, 1985. Vertical distribution of mesoplankton in the open area of the Black Sea. Mar. Biol. 89: 95–107.

    Google Scholar 

  • Vinogradov, M. E., E. A. Shushkina & Yu. V. Bulgakova, 1996. Consumption of zooplankton by the comb jelly Mnemiopsis leidyi and pelagic fishes in the Black Sea. Oceanology 35: 523–527.

    Google Scholar 

  • Vinogradov, M. Ye., E. A. Shushkina, E. I. Musayeva & P. Yu. Sorokin, 1989. A newly acclimated species in the Black Sea: the ctenophore Mnemiopsis leidyi (Ctenophora: Lobata). Oceanology 29: 220–224.

    Google Scholar 

  • Vućetić, T., 1991. Hydrobiological variablity in the Middle Adriatic in relation with the unusual distribution or behavior of Pelagia noctiluca. Mediterranean Action Plan Tech. Rep. Ser. 47: 188–201.

    Google Scholar 

  • Vuorinen, I., 1987. Is the ctenophore Pleurobrachia pileus important in the ecosystem of the Bothnian Sea? Mem. Soc. Fauna Flora Fenn. 63: 91–96.

    Google Scholar 

  • Vuorinen, I. & E. Ranta, 1987. Dynamics of marine mesozooplankton at Seili, northern Baltic Sea, in 1967–1975. Ophelia 28: 31–48.

    Google Scholar 

  • Vuorinen, I. & E. Ranta, 1988. Can signs of eutrophication be found in the mesozooplankton of Seili, Archipelago Sea? Kieler Meeresforsch 6: 126–140.

    Google Scholar 

  • Vuorinen, I. & S. Vihersaari, 1989. Distribution and abundance of Pleurobrachia pileus (Ctenophora) in the Baltic Sea. Mem. Soc. Fauna Flora Fenn. 65: 129–131.

    Google Scholar 

  • Wagenaar Hummelinck, P., 1968. Caribbean scyphomedusae of the genus Cassiopea. Uitg natuurw. Studkring Suriname 25: 1–57.

    Google Scholar 

  • Watanabe, T. & H. Ishii, 2001. In situ estimation of ephyrae liberated from polyps of Aurelia aurita using settling plates in Tokyo Bay, Japan. Hydrobiologia 451 (Dev. Hydrobiol. 155): 247–258.

    Google Scholar 

  • Weisse, T. & M.-T. Gomoiu, 2000. Biomass and size structure of the scyphomedusa Aurelia aurita in the northwestern Black Sea during spring and summer. J. Plankton Res. 22: 223–239.

    Google Scholar 

  • Wilkerson, F. P. & R. C. Dugdale, 1984. Possible connections between sewage effluent, nutrient levels and jellyfish blooms. In Workshop on Jellyfish Blooms in the Mediterranean, UNEP, Athens: 195–201.

    Google Scholar 

  • Wilkerson, F. P. & P. Kremer, 1992. DIN, DON, and PO4flux by a medusa with algal symbionts. Mar. Ecol. Prog. Ser. 90: 237–250.

    Google Scholar 

  • Yasuda, T., 1969. Ecological studies on the jelly-fish, Aurelia aurita, in Urazoko Bay, Fukui Prefecture-I Occurrence pattern of the medusa. Bull. Jpn. Soc. Sci. Fish. 35: 1–6.

    Google Scholar 

  • Yasuda, T., 1970. Ecological studies on the jelly-fish, Aurelia aurita (b.), in Urazoko Bay, Fukui Prefecture – V. Vertical distribution of the medusa. Ann. Rep. Noto Mar. Lab. 10: 15–22.

    Google Scholar 

  • Zaika, V. Ye. & N. G. Sergeyeva, 1990. Morphology and development of Mnemiopsis mccradyi (Ctenophora, Lobata) in the Black Sea. Hydrobiol. J. 26: 1–6.

    Google Scholar 

  • Zaitsev, Yu. P., 1992. Recent changes in the trophic structure of the Black Sea. Fish. Oceanogr. 1: 180–189.

    Google Scholar 

  • Zaitsev, Yu. P., 1994. Etudes sur les péches et l'environnement dans le bassin de la mer Noire. Partie 2: Effets de l'eutrophisation sur le faune de la mer Noire. Cons. Gen. Pech. Mediterr. Etud. Rev. 64: 59–88.

    Google Scholar 

  • Zaitsev, Yu. P. & B. G. Alexandrov, 1997. Recent man-made changes in the Black Sea ecosystem. In Ozsoy, E. & A. Mikaelyan (eds), Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 25–31.

    Google Scholar 

  • Zaitsev, Yu. P. & V. Mamaev, 1997. Marine biological diversity in the Black Sea: a study of change and decline. United Nations Publications, New York: 208 pp.

    Google Scholar 

  • Zaitsev, Yu. P. & L. N. Polischuk, 1984. An increase in the number of Aurelia aurita (L.) in the Black Sea. Ekol. Morya 17: 35–46.

    Google Scholar 

  • Zamponi, M. O., E. Suarez & R. Gasca, 1990. Hidromedusas (Coelenterata: Hydrozoa) y Escifomedusas (Coelenterata: Scyphozoa) de La Bahia de la Ascension, Reserva de la Biosfera de Sian Ka'an. In Navarro, D. & J. G. Robinson (eds), Diversidad Biologica en la Reserva de la Biosfera de Sian Ka'an Quintana Roo, Mexico, 8. CIQRO, University of Florida: 101–107.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arai, M.N. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451, 69–87 (2001). https://doi.org/10.1023/A:1011840123140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011840123140

Navigation