Skip to main content
Log in

Binary Fluids with Long Range Segregating Interaction. I: Derivation of Kinetic and Hydrodynamic Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the evolution of a two component fluid consisting of “blue” and “red” particles which interact via strong short range (hard core) and weak long range pair potentials. At low temperatures the equilibrium state of the system is one in which there are two coexisting phases. Under suitable choices of space-time scalings and system parameters we first obtain (formally) a mesoscopic kinetic Vlasov–Boltzmann equation for the one particle position and velocity distribution functions, appropriate for a description of the phase segregation kinetics in this system. Further scalings then yield Vlasov–Euler and incompressible Vlasov–Navier–Stokes equations. We also obtain, via the usual truncation of the Chapman–Enskog expansion, compressible Vlasov–Navier–Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • [AGA] F. J. Alexander, A. L. Garcia, and B. J. Alder, A consistent Boltzmann algorithm, Phys. Rev. Lett. 74:5212–15 (1996).

    Google Scholar 

  • [BELMII] S. Bastea, R. Esposito, J. L. Lebowitz, and R. Marra, in preparation.

  • [BL] S. Bastea and J. L. Lebowitz, Spinodal decomposition in binary gases, Phys. Rev. Lett. 78:3499 (1997).

    Google Scholar 

  • [Ca80] R. Caflisch, The fluid dynamical limit of the nonlinear Boltzmann equation, Commun. Pure and Appl. Math. 33:651–666 (1980).

    Google Scholar 

  • [Ca87] R. Caflisch, Asymptotic expansions of solutions for the Boltzmann equation, Transp. Th. Stat. Phys. 16:701–725 (1987).

    Google Scholar 

  • [CC] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge Univ. Press, Cambridge, England, 1970).

    Google Scholar 

  • [C] C. Cercignani, On the Boltzmann equation for rigid spheres, Transp. Th. Stat. Phys. 2:211 (1972); C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases (Springer-Verlag, New York, 1994).

    Google Scholar 

  • [CH] J. W. Cahn and J. I. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys. 28:258 (1958).

    Google Scholar 

  • [DS] Luis De Sobrino, On the kinetic theory of a Van der Waals gas, J. Can. Phys. 45:363 (1967).

    Google Scholar 

  • [DE] M. Di Meo and R. Esposito, The Navier-Stokes limit of the stationary Boltzmannn equation for hard potentials, J. Stat. Phys. 84:859–874 (1996).

    Google Scholar 

  • [DEL] A. De Masi, R. Esposito, and J. L. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Commun. Pure and Appl. Math. 42: 1189–1214 (1989).

    Google Scholar 

  • [ELM94] R. Esposito, J. L. Lebowitz, and R. Marra, Hydrodynamic limit of the stationary Boltzmann equation in a slab, Commun. Math. Phys. 160:49–80 (1994).

    Google Scholar 

  • [ELM95] R. Esposito, J. L. Lebowitz, and R. Marra, The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation, J. Stat. Phys. 78:389–412 (1995).

    Google Scholar 

  • [ELM98] R. Esposito, J. L. Lebowitz, and R. Marra, Solutions to the Boltzmann equation in the Boussinesq regime, J. Stat. Phys. 90:1129–1178 (1998).

    Google Scholar 

  • [ELM99] R. Esposito, J. L. Lebowitz, and R. Marra, On the derivation of hydrodynamics from the Boltzmann equation, Phys. of Fluids 11:2354–2366 (1999).

    Google Scholar 

  • [FLP] P. Fratzl, O. Penrose, and J. L. Lebowitz, Modeling of phase separation in alloys with coherent elastic misfit, J. Stat. Phys. 95:1429–1503 (1999).

    Google Scholar 

  • [G] M. Grmela, Kinetic equation approach to phase transitions, J. Stat. Phys. 3:347 (1971).

    Google Scholar 

  • [GL96] G. Giacomin and J. L. Lebowitz, Exact macroscopic description of phase segregation in model alloys with long range interactions, Phys. Rev. Lett. 76:1094 (1996).

    Google Scholar 

  • [GL97] G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits, J. Stat. Phys. 87:37–61 (1997); Phase segregation dynamics in particle systems with long range interaction II. Interface motion, SIAM J. Appl. Math. 58:1707-1729 (1998).

    Google Scholar 

  • [GM] C. Graham and S. Meleard, Stochastic particle approximations for generalized Boltzmann models and convergence estimates, The Annals of probability 25: 115–132 (1997).

    Google Scholar 

  • [GPS] F. Golse, B. Perthame, and C. Sulem, On a boundary layer problem for the non-linear Boltzmann equation, Arch. Rat. Mech. Anal. 104:81–96 (1988).

    Google Scholar 

  • [Gra] H. Grad, Asymptotic theory of the Boltzmann equation II, in Rarified Gas Dynamics, Vol. I, J. A. Laurmann, ed. (1963), pp. 26–59.

  • [GSS] J. Gunton, M. San Miguel, and P.S. Sahni, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1989).

    Google Scholar 

  • [L] J. S. Langer, An introduction to the kinetics of first-order phase transitions, in Solids Far From Equilibrium, C. Godreche, ed. (Cambridge University Press, Cambridge, England, 1991).

    Google Scholar 

  • [Lac] M. Lachowicz, On the initial layer and the existence theorem for the nonlinear Boltzmann equation, Math. Meth. Appl. Sci. 9(3):27–70 (1987).

    Google Scholar 

  • [Lan] O. E. Lanford III, The evolution of large classical systems, in Dynamical Systems, Theory and Applications, Lecture Notes in Physics, Vol. 35, J. Moser, ed. (Springer, Berlin, 1975), pp. 1–111.

    Google Scholar 

  • [LP] J. L. Lebowitz and O. Penrose, Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapor transition, J. Math. Phys. 7:98–113 (1966).

    Google Scholar 

  • [MR] R. Marra and V. Ricci, in preparation.

  • [OP] Y. Oono and S. Puri, Study of phase-separation dynamics by use of cell dynamical system, Phys. Rev. A 38:434–453 (1988).

    Google Scholar 

  • [S] E. D. Siggia, Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A 20:595–605 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastea, S., Esposito, R., Lebowitz, J.L. et al. Binary Fluids with Long Range Segregating Interaction. I: Derivation of Kinetic and Hydrodynamic Equations. Journal of Statistical Physics 101, 1087–1136 (2000). https://doi.org/10.1023/A:1026481706240

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026481706240

Navigation