Skip to main content
Log in

On the Lowest Energy Nucleation Path in a Supersaturated Lattice Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A lattice gas with non-conserved spin flip dynamics (of both non-Glauber and Glauber types) is considered at TT c , the critical temperature. For arbitrary supersaturation, S, a general expression for the inverse of the nucleation rate along the lowest energy path is derived. The exponential part is identical to the one by Neves and Schonmann [Commun. Math. Phys. 137:20 (1991)]. The preexponential can be expressed in terms of elliptic theta-functions for small S, and in the limits, respectively, of ST/φ or ST/φ (−φ being the nearest-neighbor interaction energy), elementary versions of the general expression are further obtained. The preexponential has a smooth component, as well as small-scale modulations which are approximately periodic in the inverse supersaturation. For ST/φ, the smooth part is proportional to \(\sqrt S \), in contrast to the zero-T limit where it is linear in S. The latter limit becomes apparent only at extremely low temperatures which are cubic in S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. F. Abraham, Homogeneous Nucleation Theory (Academic Press, New York, 1974).

    Google Scholar 

  2. A. A. Chernov, Modern Crystallography III, Crystal Growth (Springer, Berlin, 1984).

    Google Scholar 

  3. P. Debenedetti, Metastable Liquids (Princeton, New Jersey, 1996).

    Google Scholar 

  4. A. D. Linde, Uspekhi Fisicheskih Nauk 144:177(1984).

    Google Scholar 

  5. M. Volmer and A. Weber, Z. Phys. Chem. 119:227(1926); L. Farkas, ibid., 125:236(1927); R. Becker and W. Döring, Ann. Phys. 24:719(1935); J. Frenkel, Kinetic Theory of Liquids (Oxford University, Oxford, 1946).

    Google Scholar 

  6. J. Lothe and G. Pound, J. Chem. Phys. 36:2080(1962).

    Google Scholar 

  7. H. Reiss, J. L. Katz, and E. Cohen, J. Chem. Phys. 48:5553(1968).

    Google Scholar 

  8. C. Rottman and M. Wortis, Phys. Rev. B 24:6274(1981); R. K. P. Zia and J. E. Avron, Phys. Rev. B 25:2042(1982).

    Google Scholar 

  9. R. K. P. Zia, J. Stat. Phys. 45:801(1986); V. A. Shneidman and R. K. P. Zia, Phys. Rev. B 63:085410(2001).

    Google Scholar 

  10. M. E. Fisher, Phys. 3:255(1967).

    Google Scholar 

  11. J. S. Langer, Ann. Phys. (N.Y.) 65:53(1971).

    Google Scholar 

  12. N. J. Günther, D. A. Nicole, and D. J. Wallace, J. Phys. A 13:1755(1980).

    Google Scholar 

  13. J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, ed. (Academic, New York, 1983), p. 267.

    Google Scholar 

  14. E. Stoll, K. Binder, and T. Schneider, Phys. Rev. B 6:2777(1972); K. Binder and D. Stauffer, Adv. Physics 25:343(1976).

    Google Scholar 

  15. P. A. Rikvold, H. Tomita, S. Miyashita, and S. W. Sides, Phys. Rev. E 49:5080(1994).

    Google Scholar 

  16. C. C. Günther, P. A. Rikvold, and M. A. Novotny, Phys. Rev. Lett. 71:3898(1993); C. C. Günther, P. A. Rikvold, and M. A. NovotnyPhys. A 212:194(1994).

    Google Scholar 

  17. V. A. Shneidman, K. A. Jackson, and K. M. Beatty, J. Chem. Phys. 111:6932(1999).

    Google Scholar 

  18. E. J. Neves and R. H. Schonmann, Commun. Math. Phys. 137:209(1991).

    Google Scholar 

  19. R. Kotecky and E. Olivieri, J. Stat. Phys. 75:409(1994).

    Google Scholar 

  20. M. A. Novotny, Low-temperature metastable lifetimes of the square-lattice Ising ferromagnet, in Springer Proc. in Physics, Vol. 82: Computer Simulation Studies in Condensed-Matter Physics IX, D. P. Landau, K. K. Mon, and H.-B. Schüttler, eds. (Springer, Berlin, 1997), p. 182.

    Google Scholar 

  21. A. Bovier and F. Manzo, J. Stat. Phys. 107:757(2002).

    Google Scholar 

  22. K. Park and M. A. Novotny, cond-mat/0109214 (2001).

  23. M. A. Novotny, cond-mat/0108429 (2001).

  24. V. A. Shneidman and G. Nita, Phys. Rev. Lett. 89:25701(2002).

    Google Scholar 

  25. M. A. Novotny, cond-mat/0204098 (2002).

  26. R. J. Baxter. Exactly Solved Models in Statistical Mechanics, Chap. 1 (Academic Press, New York, 1982).

    Google Scholar 

  27. M. Kalos, J. L. Lebowitz, O. Penrose, and A. Sur, J. Stat. Phys. 18:39(1978).

    Google Scholar 

  28. O. Penrose and J. L. Lebowitz, in Studies in Statistical Mechanics, Vol. VII, Fluctuation Phenomena, E. Montrol and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1979); J. Ball, J. Carr, and O. Penrose, Commun. Math. Phys. 104:657(1986).

    Google Scholar 

  29. V. A. Shneidman, K. A. Jackson, and K. M. Beatty, J. Cryst. Growth 212:564(2000).

    Google Scholar 

  30. J. P. Marchand and P. A. Martin, Phys. A 127:681(1984).

    Google Scholar 

  31. Ph. A. Martin, J. Stat. Phys. 16:149(1977).

    Google Scholar 

  32. O. Penrose, Commun. Math. Phys. 124:515(1989).

    Google Scholar 

  33. V. A. Shneidman, Sov. Phys. Tech. Phys. 32:76(1987); ibid. 33:1338(1988).

    Google Scholar 

  34. V. A. Shneidman, J. Chem. Phys. 115:8141(2001).

    Google Scholar 

  35. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).

    Google Scholar 

  36. V. A. Shneidman and G. M. Nita, in preparation.

  37. S. B. Rutkevich, J. Stat. Phys. 104:589(2001).

    Google Scholar 

  38. P. A. Rikvold and M. A. Novotny, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shneidman, V.A. On the Lowest Energy Nucleation Path in a Supersaturated Lattice Gas. Journal of Statistical Physics 112, 293–318 (2003). https://doi.org/10.1023/A:1023687822656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023687822656

Navigation