Skip to main content
Log in

The Kinetic Theory for the Stage of Homogeneous Nucleation of Multicomponent Droplets and Bubbles: New Results

  • REVIEW
  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A review of the theoretical data accumulated for the last decade on the diffusion kinetics of the stage of homogeneous nucleation of liquid droplets and gas bubbles in multicomponent systems has been presented. In addition to the previously known results, the review contains new relations and discussions that represent the further development of own studies. Thermodynamic expressions that relate the composition of critical droplets and bubbles occurring at unstable equilibrium with metastable multicomponent systems to the sizes of new-phase particles and degrees of supersaturation in the systems have been discussed. The dynamics of the growth of individual multicomponent supercritical droplets and bubbles at the stage of nucleation has been described at arbitrary values of vapor supersaturation for droplets and gas solubility in solutions for bubbles. The kinetics of the nucleation stage has been considered for ensembles of droplets and bubbles within the framework of the mean-field description of supersaturations and the excluded-volume approach. A relation has been shown between the excluded-volume approach to the description of the nucleation stage and the Kolmogorov crystallization theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Colloid and Interface Chemistry for Nanotechnology, Kralchevsky, P., Miller, R., and Ravera, F., Eds., Boca Raton: CRC, 2016.

    Google Scholar 

  2. Liu, P.S. and Chen, G.F., Porous Materials: Processing and Applications, Amsterdam: Elsevier, 2014.

    Google Scholar 

  3. Dubrovskii, V.G., Nucleation Theory and Growth of Nanostructures, Berlin: Springer, 2014.

    Book  Google Scholar 

  4. Kelton, K. and Greer, A.L., Nucleation in Condensed Matter: Applications in Materials and Biology, Amsterdam: Elsevier Science & Technology, 2010.

    Google Scholar 

  5. Nucleation: A Transition State to the Directed Assembly of Materials (themed collection)Faraday Discuss., 2015, vol. 179, p. 1.

  6. Kashchiev, D., Nucleation: Basic Theory with Applications, Oxford: Butterworth-Heinemann, 2000.

    Google Scholar 

  7. Onuki, A., Phase Transition Dynamics, Cambridge: Cambridge Univ. Press, 2004.

    Google Scholar 

  8. Nucleation Theory and Applications, Schmelzer, J.W.P., Weinheim: Wiley-VCH, 2005.

  9. Slezov, V.V., Kinetics of First-Order Phase Transitions, Berlin: Wiley-VCH, 2009.

    Book  Google Scholar 

  10. Kalikmanov, V.I., Nucleation Theory,Lecture Notes in Physics, Dordrecht: Springer, 2013.

    Book  Google Scholar 

  11. Ruckenstein, E. and Berim, G., Kinetic Theory of Nucleation, Boca Raton: CRC, Taylor & Francis Group, 2016.

    Book  Google Scholar 

  12. Tunitskii, N.N., Zh. Fiz. Khim., 1941, vol. 15, p. 1061.

    CAS  Google Scholar 

  13. Wakeshima, H., J. Phys. Soc. Jpn., 1954, vol. 9, p. 400.

    Article  Google Scholar 

  14. Wakeshima, H., J. Phys. Soc. Jpn., 1954, vol. 9, p. 407.

    Article  Google Scholar 

  15. Kuni, F.M. and Grinin, A.P., Kolloidn. Zh., 1984, vol. 46, p. 23. Colloid Journal of the USSR, 1984, vol. 46, no.1, p. 17.

    Google Scholar 

  16. Kuni, F.M. and Grinin, A.P., Kolloidn. Zh., 1984, vol. 46, p. 460. Colloid Journal of the USSR, 1984, vol. 46, no.3, p. 412.

    CAS  Google Scholar 

  17. Kuni, F.M., Melikhov, A.A., and Kon’kov, P.A., in Problemy sovremennoi statisticheskoi fiziki (Problems of Current Statistical Physics), Kiev: Naukova Dumka, 1985, p. 11.

  18. Slezov, V.V. and Schmelzer, J.W.P., in Nucleation Theory and Applications, Schmelzer, J.W.P., Röpke, G., and Priezzhev, V.B., Eds., 1999, Dubna: JINR Publ. House, p. 6.

    Google Scholar 

  19. Lifshits, I.M. and Slezov, P.V., Zh. Eksp. Teor. Fiz., 1958, vol. 35, p. 479.

    CAS  Google Scholar 

  20. Piskunov, V.N., Vopr. At. Nauki Tekh., Ser. Teor., 1984, no. 1, p. 24.

  21. Piskunov, V.N., Dinamika aerozolei (Aerosol Dynamics), Moscow: FIZMATLIT, 2010.

  22. Vasil’ev, A.N., Kazanskii, A.K., and Adzhemyan, L.Ts., Colloid J., 2008, vol. 70, p. 703.

    Article  CAS  Google Scholar 

  23. Kuni, F.M., Kolloidn. Zh., 1984, vol. 46, p. 682. Colloid Journal of the USSR, 1984, vol. 46, no. 4, 602.

    CAS  Google Scholar 

  24. Kuni, F.M., Grinin, A.P., and Kopeikin, K.V., Vestn. Leningr. Univ., 1984, no. 16, p. 74.

  25. Kuni, F.M., Kolloidn. Zh., 1985, vol. 47, p. 284. Colloid Journal of the USSR, 1985, vol. 47, no. 2, p. 238.

    CAS  Google Scholar 

  26. Kuni, F.M., Kolloidn. Zh., 1985, vol. 47, p. 498. Colloid Journal of the USSR, 1985, vol. 47, no. 3, p. 418.

    Google Scholar 

  27. Kuni, F.M., A.A. Melikhov, K.V. Kopeikin, Kolloidn. Zh., 1986, vol. 48, p. 270. Colloid Journal of the USSR, 1986, vol. 48, no. 2, p. 227.

    CAS  Google Scholar 

  28. Grinin, A.P. and Kuni, F.M., Kolloidn. Zh., 1990, vol. 52, p. 21. Colloid Journal of the USSR, 1990, vol. 52, no. 1, p. 15.

    CAS  Google Scholar 

  29. Kuni, F.M. and Grinin, A.P., Kolloidn. Zh., 1990, vol. 52, p. 54. Colloid Journal of the USSR, 1990, vol. 52, no. 1, p. 40.

    CAS  Google Scholar 

  30. Kuni, F.M. and Grinin, A.P., Kolloidn. Zh., 1990, vol. 52, p. 277. Colloid Journal of the USSR, 1990, vol. 52, no. 2, p. 229.

    CAS  Google Scholar 

  31. Grinin, A.P. and Kuni, F.M., Kolloidn. Zh., 1990, vol. 52, p. 351. Colloid Journal of the USSR, 1990, vol. 52, no. 2, p. 301.

    CAS  Google Scholar 

  32. Grinin, A.P., Kuni, F.M., and Feshchenko, N.P., Teor. Mat. Fiz., 1992, vol. 93, p. 138.

    Article  CAS  Google Scholar 

  33. Kuni, F.M., in Problemy teoreticheskoi fiziki III (Problems of Theoretical Physics III), Leningrad: Leningr. Gos. Univ., 1988, p. 192.

  34. Dubrovskii, V.G. and Nazarenko, M.V., J. Chem. Phys., 2010, vol. 132, 114507.

    Article  CAS  PubMed  Google Scholar 

  35. Dubrovskii, V.G. and Nazarenko, M.V., J. Chem. Phys., 2010, vol. 132, 114508.

    Article  CAS  PubMed  Google Scholar 

  36. Konobejewski, S., Z. Phys. Chem., 1934, vol. 171A, p. 25.

    Article  Google Scholar 

  37. Konobeevskii, S.T., Izv. Akad. Nauk SSSR, Ser. Khim., 1937, no. 5, p. 1909.

  38. Konobeevskii, S.T., Zh. Eksp. Teor. Fiz., 1943, vol. 13, p. 185.

    CAS  Google Scholar 

  39. Rusanov, A.I., Usp. Khim., 1964, vol. 33, p. 873. Russ. Chem. Rev., 1964, vol. 33, p. 385.

    Article  CAS  Google Scholar 

  40. Rusanov, A.I., Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibria and Surface Phenomena), Leningrad: Khimiya, 1967.

  41. Ward, C.A., Tikuisis, P., and Venter, R.D., J. Appl. Phys., 1982, vol. 53, p. 6076.

    Article  CAS  Google Scholar 

  42. Schmelzer, J. and Ulbricht, H., J. Colloid Interface Sci., 1987, vol. 117, p. 325.

    Article  CAS  Google Scholar 

  43. Ulbricht, H., Schmelzer, J., Mahnke, R., and Schweitzer, F., Thermodynamics of Finite Systems and the Kinetics of First-Order Phase Transitions, Leipzig: Teubner, 1988.

    Book  Google Scholar 

  44. Schmelzer, J.W.P. and Abyzov, A.S., AIP Adv., 2011, vol. 1, 042160.

    Article  CAS  Google Scholar 

  45. Grossier, R. and Veesler, S., Cryst. Growth Des., 2009, vol. 9, p. 1917.

    Article  CAS  Google Scholar 

  46. Shchekin, A.K., Shabaev, I.V., and Hellmuth, O., J. Chem. Phys., 2013, vol. 138, 054704.

    Article  PubMed  CAS  Google Scholar 

  47. Dubrovskii, V.G., Cryst. Growth Des., 2017, vol. 17, p. 2589.

    Article  CAS  Google Scholar 

  48. Philippe, T., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2017, vol. 96, 032802.

    Article  CAS  Google Scholar 

  49. Sakurai, D., Paul, S., Hsu, W.-L., Daiguji, H., and Takemura, F., J. Phys. Chem. B, 2019, vol. 123, p. 542.

    Article  CAS  PubMed  Google Scholar 

  50. Shchekin, A.K., Koga, K., and Volkov, N.A., J. Chem. Phys., 2019, vol. 151, 244903.

    Article  CAS  PubMed  Google Scholar 

  51. Pesthy, A.J., Flagan, R.C., and Seinfeld, J.H., J. Colloid Interface Sci., 1981, vol. 82, p. 465.

    Article  CAS  Google Scholar 

  52. Kurasov, V.B., Phys. A (Amsterdam), 1996, vol. 226, p. 117.

    Article  CAS  Google Scholar 

  53. Kurasov, V.B., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2001, vol. 63, 056123.

    Article  CAS  Google Scholar 

  54. Kuni, F.M., Kuchma, A.E., and Adzhemyan, L.Ts., Colloid J., 2009, vol. 71, p. 360.

    Article  CAS  Google Scholar 

  55. Kuchma, A.E., Kuni, F.M., and Shchekin, A.K., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2009, vol. 80, 061125.

    Article  CAS  Google Scholar 

  56. Kuchma, A.E., Kuni, F.M., and Shchekin, A.K., Vestn. S.-Peterb. Gos. Univ., Ser. 4, 2009, p. 320.

  57. Kuchma, A.E., Markov, M.N., and Shchekin, A.K., Phys. A (Amsterdam), 2014, vol. 402, p. 255.

    Article  CAS  Google Scholar 

  58. Kuchma, A.E., Shchekin, A.K., and Markov, M.N., Colloid J., 2014, vol. 76, p. 701.

    Article  CAS  Google Scholar 

  59. Kuchma, A.E., Shchekin, A.K., and Markov, M.N., Colloids Surf. A, 2015, vol. 483, p. 307.

    Article  CAS  Google Scholar 

  60. Kuchma, A.E., Shchekin, A.K., and Bulgakov, M.Yu., Phys. A (Amsterdam), 2017, vol. 468, p. 228.

    Article  CAS  Google Scholar 

  61. Kuchma, A.E., Shchekin, A.K., Martyukova, D.S., and Savin, A.V., Fluid Phase Equilib., 2018, vol. 455, p. 63.

    Article  CAS  Google Scholar 

  62. Vehkamäki, H., Classical Nucleation Theory in Multicomponent Systems, Berlin–Heidelberg: Springer, 2006.

  63. Reiss, H., J. Chem. Phys., 1950, vol. 18, p. 840.

    Article  CAS  Google Scholar 

  64. Hirschfelder, J.O., J. Chem. Phys., 1974, vol. 35, p. 2690.

    Article  Google Scholar 

  65. Mirabel, P. and Katz, J.L., J. Chem. Phys., 1974, vol. 60, p. 1138.

    Article  CAS  Google Scholar 

  66. Stauffer, D., J. Aerosol Sci., 1976, vol. 7, p. 319.

    Article  CAS  Google Scholar 

  67. Trinkaus, H., Phys. Rev. B, 1983, vol. 27, p. 7372.

    Article  CAS  Google Scholar 

  68. Shi, G. and Seinfeld, J.H., J. Chem. Phys., 1990, vol. 93, p. 9033.

    Article  CAS  Google Scholar 

  69. Wu, D.T., J. Chem. Phys., 1993, vol. 99, p. 1990.

    Article  CAS  Google Scholar 

  70. Oxtoby, D.W. and Kashchiev, D., J. Chem. Phys., 1994, vol. 100, p. 7665.

    Article  CAS  Google Scholar 

  71. McGraw, R., J. Chem. Phys., 1995, vol. 102, p. 2098.

    Article  Google Scholar 

  72. Viisanen, Y., Kulmala, M., and Laaksonen, A., J. Chem. Phys., 1997, vol. 107, p. 920.

    Article  CAS  Google Scholar 

  73. Wyslouzil, B.E. and Wilemski, G., J. Chem. Phys., 1996, vol. 105, p. 1090.

    Article  CAS  Google Scholar 

  74. Li, J.-S., Nishioka, K., and Maksimov, I.L., Phys. Rev. B, 1998, vol. 58, p. 7580.

    Article  CAS  Google Scholar 

  75. Kožíšek, Z. and Demo, P., J. Cryst. Growth, 1998, vol. 194, p. 239.

    Article  Google Scholar 

  76. Wilemski, G., J. Chem. Phys., 1999, vol. 110, p. 6451.

    Article  CAS  Google Scholar 

  77. Peeters, P., Hrubý, J., and Van Dongen, M.E.H., J. Phys. Chem. B, 2001, vol. 105, p. 11763.

    Article  CAS  Google Scholar 

  78. Chen, B., Siepmann, J.I., and Klein, M.L., J. Am. Chem. Soc., 2003, vol. 125, p. 3113.

    Article  CAS  PubMed  Google Scholar 

  79. Fisenko, S.P. and Wilemski, G., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2004, vol. 70, 056119.

    Article  CAS  Google Scholar 

  80. Kathmann, S.M., Schenter, G.K., and Garrett, B.C., J. Chem. Phys., 2004, vol. 120, p. 9133.

    Article  CAS  PubMed  Google Scholar 

  81. Kurasov, V., Phys. A (Amsterdam), 2005, vol. 353, p. 159.

    Article  Google Scholar 

  82. Kurasov, V., arXiv preprint. 2007. arXiv:0711.4559.

  83. McGraw, R. and Zhang, R., J. Chem. Phys., 2008, vol. 128, 064508.

    Article  PubMed  CAS  Google Scholar 

  84. Kalikmanov, V.I., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2010, vol. 81, 050601.

    Article  CAS  Google Scholar 

  85. Van Putten, D.S., Sidin, R.S.R., and Hagmeijer, R., J. Chem. Phys., 2010, vol. 132, 184511.

    Article  CAS  Google Scholar 

  86. Alekseechkin, N.V., J. Chem. Phys., 2015, vol. 143,  054502.

    Article  PubMed  CAS  Google Scholar 

  87. Wyslouzil, B.E. and Wolk, J., J. Chem. Phys., 2016, vol. 145, 211702.

    Article  PubMed  CAS  Google Scholar 

  88. Kuni, F.M. and Melikhov, A.A., Teor. Mat. Fiz., 1989, vol. 81, p. 247.

    Article  Google Scholar 

  89. Kuni, F.M., Melikhov, A.A., Novozhilova, T.Yu., and Terent’ev, I.A., Teor. Mat. Fiz., 1990, vol. 83, p. 274.

    Article  CAS  Google Scholar 

  90. Melikhov, A.A., Kurasov, V.B., Dzhikaev, Yu.Sh., and Kuni, F.M., Zh. Tekh. Fiz., 1991, vol. 61, no. 1, p. 27.

    Google Scholar 

  91. Dzhikaev, Yu.Sh., Zh. Tekh. Fiz., 1992, vol. 62, no. 7, p. 60.

    CAS  Google Scholar 

  92. Dzhikaev, Yu.Sh., Zh. Tekh. Fiz., 1992, vol. 62, no. 7, p. 69.

    CAS  Google Scholar 

  93. Djikaev, Y.S., Grinin, A.P., and Kuni, F.M., Phys. A (Amsterdam), 2002, vol. 305, p. 387.

    Article  CAS  Google Scholar 

  94. Djikaev, Y.S., J. Chem. Phys., 2002, vol. 116, p. 9865.

    Article  CAS  Google Scholar 

  95. Kusaka, I., Talreja, M., and Tomasko, D.L., AIChE J., 2013, vol. 59, p. 3042.

    Article  CAS  Google Scholar 

  96. Shardt, N. and Elliott, J.A.W., J. Phys. Chem. A, 2016, vol. 120, p. 2194.

    Article  CAS  PubMed  Google Scholar 

  97. Shardt, N. and Elliott, J.A.W., Langmuir, 2017, vol. 33, p. 11077.

    Article  CAS  PubMed  Google Scholar 

  98. Shardt, N. and Elliott, J.A.W., J. Phys. Chem. B, 2018, vol. 122, p. 2434.

    Article  CAS  PubMed  Google Scholar 

  99. Slezov, V.V. and Schmelzer, J.W.P., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002, vol. 65, 031506.

    Article  CAS  Google Scholar 

  100. Rusanov, A.I., Lektsii po termodinamike poverkhnostei (Lectures on Surface Thermodynamics), St. Petersburg: Lan’, 2013.

  101. Kuchma, A.E., Shchekin, A.K., and Martyukova, D.S., J. Chem. Phys., 2018, vol. 148, 234103.

    Article  PubMed  CAS  Google Scholar 

  102. Kuchma, A.E. and Shchekin, A.K., J. Chem. Phys., 2019, vol. 150, 054104.

    Article  PubMed  CAS  Google Scholar 

  103. Kulmala, M., Vesala, T., and Wagner, P.E., Proc. R. Soc. London A, 1993, vol. 441, p. 589.

    Article  CAS  Google Scholar 

  104. Vesala, T. and Kulmala, M., Phys. A (Amsterdam), 1993, vol. 192, p. 107.

    Article  CAS  Google Scholar 

  105. Vesala, T., Kulmala, M., Rudolf, R., Vrtala, A., and Wagner, P.E., J. Aerosol Sci., 1997, vol. 28, p. 565.

    Article  CAS  Google Scholar 

  106. Mattila, T., Kulmala, M., and Vesala, T., J. Aerosol Sci., 1997, vol. 28, p. 553.

    Article  CAS  Google Scholar 

  107. Kuchma, A.E., Shchekin, A.K., and Kuni, F.M., Colloid J., 2011, vol. 73, p. 224.

    Article  CAS  Google Scholar 

  108. Kuchma, A.E., Shchekin, A.K., and Kuni, F.M., Phys. A (Amsterdam), 2011, vol. 390, p. 3308.

    Article  CAS  Google Scholar 

  109. Kuchma, A.E., Martyukova, D.S., Lezova, A.A., and Shchekin, A.K., Colloids Surf. A, 2013, vol. 432, p. 147.

    Article  CAS  Google Scholar 

  110. Kuchma, A.E., Shchekin, A.K., Lezova, A.A., and Martyukova, D.S., Colloid J., 2014, vol. 76, p. 576.

    Article  CAS  Google Scholar 

  111. Kuchma, A.E., Shchekin, A.K., Martyukova, D.S., and Lezova, A.A., Colloid J., 2016, vol. 78, p. 340.

    Article  CAS  Google Scholar 

  112. Martyukova, D.S., Shchekin, A.K., Kuchma, A.E., and Lezova, A.A., Colloid J., 2016, vol. 78, p. 353.

    Article  CAS  Google Scholar 

  113. Kuchma, A.E. and Shchekin, A.K., Nanosyst.Phys. Chem. Mat., 2015, vol. 6, p. 479.

    CAS  Google Scholar 

  114. Brennen, C.E., Cavitation and Bubble Dynamics, Oxford: Oxford Univ. Press, 1995.

    Google Scholar 

  115. Scriven, L.E., Chem. Eng. Sci., 1959, vol. 10, p. 1.

    Article  CAS  Google Scholar 

  116. Scriven, L.E., Chem. Eng. Sci., 1962, vol. 17, p. 55.

    Article  Google Scholar 

  117. Plesset, M.S. and Prosperetti, A., Annu. Rev. Fluid Mech., 1977, vol. 9, p. 145.

    Article  CAS  Google Scholar 

  118. Lensky, N.G., Navon, O., and Lyakhovsky, V., J. Volcanol. Geotherm. Res., 2004, vol. 129, p. 7.

    Article  CAS  Google Scholar 

  119. Chernov, A.A., Pil’nik, A.A., Davydov, M.N., Ermanyuk, V.E., and Pakhomov, M.A., Int. J. Heat Mass Transfer, 2018, vol. 123, p. 1101.

    Article  CAS  Google Scholar 

  120. Chernov, A.A., Pil’nik, A.A., and Davydov, M.N., J. Phys.: Conf. Ser., 2019, vol. 1382, 012107.

    Google Scholar 

  121. Fuks, N.A., Isparenie i rost kapel' v gazoobraznoi srede (Drop Evaporation and Growth in Gaseous Medium), Moscow: Akad. Nauk SSSR, 1958.

  122. Kuchma, A.E. and Shchekin, A.K., in Nucleation Theory and Applications, Schmelzer, J.W.P., Röpke, G., and Priezzhev, V.B., Eds., Dubna: JINR, 2011, p. 203.

    Google Scholar 

  123. Kuchma, A.E. and Shchekin, A.K., Colloid J., 2012, vol. 74, p. 215.

    Article  CAS  Google Scholar 

  124. Shchekin, A.K., Kuni, F.M., and Lezova, A.A., Colloid J., 2011, vol. 73, p. 394.

    Article  CAS  Google Scholar 

  125. Kuchma, A.E., Shchekin, A.K., and Martyukova, D.S., J. Aerosol Sci., 2016, vol. 102, p. 72.

    Article  CAS  Google Scholar 

  126. Grinin, A.P., Kuni, F.M., and Gor, G.Yu., J. Mol. Liq., 2009, vol. 148, p. 32.

    Article  CAS  Google Scholar 

  127. Grinin, A.P., Kuni, F.M., and Gor, G.Yu., Colloid J., 2009, vol. 71, p. 46.

    Article  CAS  Google Scholar 

  128. Alekseechkin, N.V., J. Non-Cryst. Solids, 2011, vol. 357, p. 3159.

    Article  CAS  Google Scholar 

  129. Petukhov, B.V., Phys. Solid State, 2012, vol. 54, p. 1289.

    Article  CAS  Google Scholar 

  130. Sinha, I. and Mandal, R.K., J. Non-Cryst. Solids, 2011, vol. 357, p. 919.

    Article  CAS  Google Scholar 

  131. Homberg, D., Patacchini, F.S., Sakamoto, K., and Zimmer, J., IMA J. Appl. Math., 2017, vol. 82, p. 763.

    Article  Google Scholar 

  132. Kolmogorov, A.N., Bull. Acad. Sci. USSR,Ser. Mat., 1937, vol. 3, p. 355.

    Google Scholar 

  133. Johnson, W. and Mehl, R., Trans.AIME, 1939, vol. 135, p. 416.

  134. Avrami, M., J. Chem. Phys., 1939, vol. 7, p. 1103.

    Article  CAS  Google Scholar 

  135. Avrami, M., J. Chem. Phys., 1940, vol. 8, p. 212.

    Article  CAS  Google Scholar 

  136. Avrami, M., J. Chem. Phys., 1941, vol. 9, p. 177.

    Article  CAS  Google Scholar 

  137. Filipovich, V.N., Fiz. Khim. Stekla, 1981, vol. 7, p. 364.

    Google Scholar 

  138. Filipovich, V.N., Kalinina, A.M., Fokin, V.M., Shishkina, V.K., and Dmitriev, D.D., Fiz. Khim. Stekla, 1983, vol. 9, p. 58.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-03-00997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shchekin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchekin, A.K., Kuchma, A.E. The Kinetic Theory for the Stage of Homogeneous Nucleation of Multicomponent Droplets and Bubbles: New Results. Colloid J 82, 217–244 (2020). https://doi.org/10.1134/S1061933X20030102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20030102

Navigation