Skip to main content

Nucleation at High Supersaturations

  • Chapter
  • First Online:
Nucleation Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 860))

  • 5539 Accesses

Abstract

At high supersaturations (deep quenches) the system from being metastable becomes unstable; in the theory of phase transitions the boundary between the metastable and unstable regions is given by a thermodynamic spinodal being a locus of points corresponding to a divergent compressibility. Rigorously speaking the transition from metastable to unstable states does not reduce to a sharp line but rather represents a region of a certain width which depends on the range of interparticle interactions [1].Within the spinodal region the fluid becomes unstable giving rise to the phenomenon of spinodal decomposition [2], characterized by vanishing of the free energy barrier of cluster formation at some finite value of the supersaturation. The classical theory does not signal the spinodal: the nucleation barrier decreases with \(S\) but remains finite for all values of \(S\) (see Eq. (3.28).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Gould, W. Klein, Physica D 66, 61 (1993)

    Article  ADS  MATH  Google Scholar 

  2. P.G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, Concepts and Principles, 1996)

    Google Scholar 

  3. J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)

    Article  ADS  Google Scholar 

  4. J.S. Langer, Ann. Phys. 41, 108 (1967)

    Article  ADS  Google Scholar 

  5. J.S. Langer, Ann. Phys. 54, 258 (1969)

    Article  ADS  Google Scholar 

  6. W. Klein, Phys. Rev. Letters 47, 1569 (1981)

    Article  ADS  Google Scholar 

  7. C. Unger, W. Klein, Phys. Rev. B 29, 2698 (1984)

    Article  ADS  Google Scholar 

  8. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1969)

    Google Scholar 

  9. G.A. Korn, T.M. Korn, Mathematical Handbook (McGraw-Hill, New York, 1968)

    Google Scholar 

  10. Yu.B. Rumer, M.S. Rivkin, Thermodynamics, Statistical Physics and Kinetics (Nauka, Moscow, 1977). (in Russian)

    Google Scholar 

  11. A.J. Bray, Adv. Phys. 43, 357 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  12. J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, The Theory of Critical Phenomena (Clarendon Press, Oxford, 1995)

    Google Scholar 

  13. S.B. Kiselev, Physica A 269, 252 (1999)

    Article  ADS  Google Scholar 

  14. M. Struwe, Variational Methods: Application to Nonlinear Partial Differential Equations and Hamiltonian Systems (Springer, Berlin, 2000)

    Google Scholar 

  15. G. Wilemski, J.-S. Li, J. Chem. Phys. 121, 7821 (2004)

    Article  ADS  Google Scholar 

  16. Z.-G. Wang, J. Chem. Phys. 117, 481 (2002)

    Article  ADS  Google Scholar 

  17. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  18. A.Z. Patashinskii, B.I. Shumilo, Sov. Phys. JETP 50, 712 (1979)

    ADS  Google Scholar 

  19. A.Z. Patashinskii, B.I. Shumilo, Sov. Phys. Solid State 22, 655 (1980)

    Google Scholar 

  20. V.K. Schen, P.G. Debenedetti, J. Chem. Phys. 118, 768 (2003)

    Article  ADS  Google Scholar 

  21. K. Binder, Phys. Rev. A 29, 341 (1984)

    Article  ADS  Google Scholar 

  22. K.A. Streletzky, Yu. Zvinevich, B.E. Wyslouzil, J. Chem. Phys. 116, 4058 (2002)

    Article  ADS  Google Scholar 

  23. A. Khan, C.H. Heath, U.M. Dieregsweiler, B.E. Wyslouzil, R. Strey, J. Chem. Phys. 119, 3138 (2003)

    Article  ADS  Google Scholar 

  24. C.H. Heath, K.A. Streletzky, B.E. Wyslouzil, J. Wölk, R. Strey, J. Chem. Phys. 118, 5465 (2003)

    Article  ADS  Google Scholar 

  25. Y.J. Kim, B.E. Wyslouzil, G. Wilemski, J. Wölk, R. Strey, J. Phys. Chem. A 108, 4365 (2004)

    Article  Google Scholar 

  26. S. Sinha, A. Bhabbe, H. Laksmono, J. Wölk, R. Strey, B. Wyslouzil, J. Chem. Phys. 132, 064304 (2010)

    Article  ADS  Google Scholar 

  27. V.I. Kalikmanov, J. Chem. Phys. 129, 044510 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kalikmanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kalikmanov, V.I. (2013). Nucleation at High Supersaturations. In: Nucleation Theory. Lecture Notes in Physics, vol 860. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3643-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3643-8_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3642-1

  • Online ISBN: 978-90-481-3643-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics