Skip to main content
Log in

Kinetics of gas-Grain Reactions in the Solar Nebula

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Thermochemical equilibrium calculations predict gas phase, gas-grain, and solid phase reactions as a function of pressure and temperature in the solar nebula. However, chemical reactions proceed at different rates, which generally decrease exponentially with decreasing temperature. At sufficiently low temperatures (which vary depending on the specific reaction) there may not have been enough time for the predicted equilibrium chemistry to have taken place before the local environment cooled significantly or before the gaseous solar nebula was dispersed. As a consequence, some of the high temperature chemistry established in sufficiently hot regions of the solar nebula may be quenched or frozen in without the production of predicted low temperature phases. Experimental studies and theoretical models of three exemplary low temperature reactions, the formation of troilite (FeS), magnetite (Fe3O4), and hydrous silicates, have been done to quantify these ideas. A comparison of the chemical reaction rates with the estimated nebular lifetime of 0.1-10 million years indicates that troilite formation proceeded to completion in the solar nebula. Magnetite formation was much slower and only thin magnetite rims could have formed on metal grains. Hydrous silicate formation is predicted to be even slower, and hydrous silicates in meteorites and interplanetary dust particles probably formed later on the parent bodies of these objects, instead of in the solar nebula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barshay, S. S., and Lewis, J. S.: 1976, 'Chemistry of Primitive Solar Material', Ann. Rev. Astron. Astrophys. 14, 81–90.

    Article  ADS  Google Scholar 

  • Benson, S.W.: 1982, The Foundations of Chemical Kinetics, Krieger Publishing Co., Malabar, Florida.

    Google Scholar 

  • Boss, A. P.: 1998, 'Temperatures in Protoplanetary Disks', Annu. Rev. Earth Planet. Sci. 26, 53–80.

    Article  ADS  Google Scholar 

  • Boström, K., and Fredriksson, K.: 1966, 'Surface Condition of the Orgueil Meteorite Parent Body as Indicated by Mineral Associations', Smithsonian Misc. Coll. 151(3), 39 pp.

    Google Scholar 

  • Bratton, R. J., and Brindley, G.W.: 1965, 'Kinetics of Vapour Phase Hydration of Magnesium Oxide Part 2: Dependence on Temperature andWater Vapour Pressure', Trans. Faraday. Soc. 61, 1017–1025.

    Article  Google Scholar 

  • Bunch, T. E., and Chang, S.: 1980, 'Carbonaceous Chondrites–II. Carbonaceous Chondrite Phyllosilicates and Light Element Geochemistry as Indicators of Parent Body Processes and Surface Conditions', Geochim. Cosmochim. Acta 44, 1543–1577.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W.: 1978, 'Physics of the Primitive Solar Accretion Disk', Moon and Planets 18, 5–40.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W., and Fegley, M. B.: 1982, 'Nucleation and Condensation in the Primitive Solar Nebula', Icarus 52, 1–13.

    Article  ADS  Google Scholar 

  • Cameron, A. G.W.: 1995, 'The First Ten Million Years in the Solar Nebula', Meteoritics 30, 133–161.

    ADS  Google Scholar 

  • DuFresne, E.R., and Anders, E.: 1962, 'On the Chemical Evolution of the Carbonaceous Chondrites', Geochim. Cosmochim. Acta 26, 1085–1114.

    Article  ADS  Google Scholar 

  • Fegley, B., Jr.: 1988, 'Cosmochemical Trends of Volatile Elements in the Solar System', J. A. Nuth and P. Sylvester (eds.), Workshop on The Origins of Solar Systems, LPI Technical Report No.88-04, Houston, Texas, pp. 51–60.

  • Fegley, B., Jr.: 1993, 'Chemistry of the Solar Nebula', in M. Greenberg, C.X. Mendoza-Gomez, and V. Pirronello (eds.), The Chemistry of Life's Origins, NATO Advanced Science Institute, Series C vol. 416, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 75–147.

    Google Scholar 

  • Fegley, B., Jr.: 1997, 'Cosmochemistry', in J.H. Shirley and R.W. Fairbridge (eds.), Encyclopedia of Planetary Sciences, Chapman and Hall, London, UK, pp. 169–177.

    Google Scholar 

  • Fegley, B., Jr.: 1998, 'Iron Grain Catalyzed Methane Formation in the Jovian Protoplanetary Subnebulae and the Origin of Methane on Titan', Bull. Amer. Astron. Soc. 30, 1092.

    ADS  Google Scholar 

  • Fegley, B., Jr.: 1999, 'Chemical and Physical Processing of Presolar Materials in the Solar Nebula and the Implications for Preservation of Presolar Materials in Comets', in K. Altwegg, J. Geiss, W. Hübner (eds.), The Origin and Composition of Cometary Material, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Fegley, B., Jr., and Lewis, J. S.: 1980, 'Volatile Element Chemistry in the Solar Nebula: Na, K, F, Cl, Br, and P', Icarus 41, 439–455.

    Article  ADS  Google Scholar 

  • Fegley, B., Jr., and Prinn, R. G.: 1989, 'Solar Nebula Chemistry: Implications for Volatiles in the Solar System', in H. Weaver and L. Danly (eds.), The Formation and Evolution of Planetary Systems, Cambridge Univ. Press, Cambridge, UK, pp. 171–211.

    Google Scholar 

  • Fegley, B., Jr., and Hong, Y.: 1998, 'Experimental Studies of Grain Catalyzed Reduction of CO to Methane in the Solar Nebula', EOS Trans. AGU 79, S361–S362.

    Google Scholar 

  • Gail, H. P.: 1998, 'Chemical Reactions in Protoplanetary Accretion Disks IV. Multicomponent Dust Mixture', Astron. Astrophys. 332, 1099–1122.

    ADS  Google Scholar 

  • Grossman, L.: 1972, 'Condensation in the Primitive Solar Nebula', Geochim. Cosmochim. Acta 36, 597–619.

    Article  ADS  Google Scholar 

  • Hong, Y. and Fegley, B., Jr.: 1998, 'Experimental Studies of Magnetite Formation in the Solar Nebula', Meteoritics and Planetary Science 33, 1101–1112.

    ADS  Google Scholar 

  • Hua, X., and Buseck, P.R.: 1998, 'Unusual Forms of Magnetite in the Orgueil Carbonaceous Chondrite', Meteoritics and Planetary Science 33, A215–A220.

    ADS  Google Scholar 

  • Jedwab, J.: 1967, 'La Magnetite en Plaquettes des Meteorites Carbonées d'alais, Ivuna et Orgueil', Earth Planet. Sci. Lett. 2, 440–444.

    Article  ADS  Google Scholar 

  • Jedwab, J.: 1971, 'La Magnétite de la Météorite d'Orgueil Vue au Microscope Electronique a Balayage', Icarus 15, 319–340.

    Article  ADS  Google Scholar 

  • Johnson, N. M., and Fegley, B., Jr.: 1998, 'Tremolite Dehydroxylation and the History of Water on Venus', Bull. Amer. Astron. Soc. 30, 1106.

    ADS  Google Scholar 

  • Jones, T. D., Lebofsky, L. A., Lewis, J. S., and Marley, M. S.: 1990, 'The Composition and Origin of the C, P, and D Asteroids: Water as a Tracer of Thermal Evolution in the Outer Belt', Icarus 88, 172–192.

    Article  ADS  Google Scholar 

  • Kerridge, J. F., MacKay, A. L., and Boynton, W.V.: 1979, 'Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface', Science 205, 395–397.

    ADS  Google Scholar 

  • Larimer, J.W.: 1988, 'The Cosmochemical Classification of the Elements', in J. F. Kerridge and M. S. Matthews (eds.), Meteorites and the Early Solar System, Univ. of Arizona Press, Tucson, Arizona, pp. 375–389.

    Google Scholar 

  • Lauretta, D. S., Kremser, D. T., and Fegley, B., Jr.: 1996a, 'The Rate of Iron Sulfide Formation in the Solar Nebula', Icarus 122, 288–315.

    Article  ADS  Google Scholar 

  • Lauretta, D. S., Fegley, B., Jr., Lodders, K., and Kremser, D. T.: 1996b, 'The Kinetics and Mechanism of Iron Sulfide Formation in the Solar Nebula', Proc. NIPR Symp. Antarct. Meteorites 9, Tokyo, Japan, pp. 111–126.

    Google Scholar 

  • Lauretta, D. S., Kremser, D. T., and Fegley, B., Jr.: 1996c, 'A Comparative Study of Experimental and Meteoritic Sulfide Assemblages', Proc. NIPR Symp. Antarct. Meteorites 9, Tokyo, Japan, pp. 97–110.

    Google Scholar 

  • Lauretta, D. S., Lodders, K., and Fegley, B., Jr.: 1997, 'Experimental Simulations of Sulfide Formation in the Solar Nebula', Science 277, 358–360.

    Article  ADS  Google Scholar 

  • Lauretta, D. S., Lodders, K., and Fegley, B., Jr.: 1998, 'Kamacite Sulfurization in the Solar Nebula', Meteoritics Planet. Sci. 33, 821–834.

    Article  ADS  Google Scholar 

  • Layden, G.K., and Brindley, G.W.: 1963, 'Kinetics of Vapor-Phase Hydration ofMagnesium Oxide', J. Am. Ceram. Soc. 46, 518–522.

    Article  Google Scholar 

  • Lewis, J. S.: 1974, 'The Temperature Gradient in the Solar Nebula', Science 186, 440–443.

    ADS  Google Scholar 

  • Lewis, J. S., and Prinn, R. G.: 1980, 'Kinetic Inhibition of CO and N2 Reduction in the Solar Nebula', Astrophys. J. 238, 357–364.

    Article  ADS  Google Scholar 

  • Lodders, K., and Fegley, B., Jr.: 1997, 'Condensation Chemistry of Carbon Stars', in T. J. Bernatowicz and E. Zinner (eds.), Astrophysical Implications of the Laboratory Study of Presolar Materials, American Institute of Physics, Woodbury, New York, pp. 391–423.

    Google Scholar 

  • Lodders, K., and Fegley, B., Jr.: 1998, The Planetary Scientist's Companion, Oxford University Press, New York.

    Google Scholar 

  • Metzler, K., Bischoff, A., and Stöffler, D.: 1992, 'Accretionary Dust Mantles in CM Chondrites: Evidence for Solar Nebula Processes', Geochim. Cosmochim. Acta 56, 2873–2897.

    Article  ADS  Google Scholar 

  • Morey, G.W.: 1957, 'The Solubility of Solids in Gases', Econ. Geol. 52, 225–251.

    Article  Google Scholar 

  • Nagahara, H.: 1984, 'Matrices of Type 3 Ordinary Chondrites – Primitive Nebular Records', Geochim. Cosmochim. Acta 48, 2581–2595.

    Article  ADS  Google Scholar 

  • Norris, T. L.: 1980, 'Kinetic Model of Ammonia Synthesis in the Solar Nebula', Earth Planet. Sci. Lett. 47, 43–50.

    Article  ADS  Google Scholar 

  • Palme, H., and Fegley, B., Jr.: 1990, 'High-Temperature Condensation of Iron-Rich Olivine in the Solar Nebula', Earth Planet. Sci. Lett. 101, 180–195.

    Article  ADS  Google Scholar 

  • Podosek, F.A., and Cassen, P.: 1994, 'Theoretical, Observational, and Isotopic Estimates of the Lifetime of the Solar Nebula', Meteoritics 29, 6–25.

    ADS  Google Scholar 

  • Prinn, R. G., and Fegley, B., Jr.: 1981, 'Kinetic Inhibition of CO and N2 Reduction in Circumplanetary Nebulae: Implications for Satellite Composition', Astrophys. J. 249, 308–317.

    Article  ADS  Google Scholar 

  • Prinn, R. G., and Fegley, B., Jr.: 1987, 'The Atmospheres of Venus, Earth, and Mars: A Critical Comparison', Ann. Rev. Earth Planet. Sci. 15, 171–212.

    Article  ADS  Google Scholar 

  • Prinn, R. G., and Fegley, B., Jr.: 1989, 'Solar Nebula Chemistry: Origin of Planetary, Satellite, and Cometary Volatiles', in S. Atreya, J. Pollack, and M.S. Matthews (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, Univ. of Arizona Press, Tucson, Arizona, pp. 78–136.

    Google Scholar 

  • Salpeter, E. E.: 1974, 'Nucleation and Growth of Dust Grains', Astrophys. J. 193, 579–584.

    Article  ADS  Google Scholar 

  • Schmalzried, H.: 1995, Chemical Kinetics of Solids, VCH Publishers, New York.

    Google Scholar 

  • Sedlmayr, E., and Krüger, D.: 1997, 'Formation of Dust Particles in Cool Stellar Outflows', in T. J. Bernatowicz and E. Zinner (eds.), Astrophysical Implications of the Laboratory Study of Presolar Materials, American Institute of Physics, Woodbury, New York, pp. 425–450.

    Google Scholar 

  • Stevenson, D. J., and Lunine, J. I.: 1988, 'Rapid Formation of Jupiter by Diffusive Redistribution of Water Vapor in the Solar Nebula', Icarus 75, 146–155.

    Article  ADS  Google Scholar 

  • Urey, H.C.: 1953, 'Chemical Evidence Regarding the Earth's Origin', in Thirteenth International Congress: Pure and Applied Chemistry and Plenary Lectures, Almquist and Wiksells, Stockholm, Sweden, pp. 188–217.

  • Wegner, W.W., and Ernst, W.G.: 1983, 'Experimentally Determined Hydration and Dehydration Reaction Rates in the System MgO-SiO2-H2O', Am. J. Sci. 283A, 151–180.

    Google Scholar 

  • Willacy, K., Klahr, H. H., Millar, T. J., and Henning, Th.: 1998, 'Gas and Grain Chemistry in a Protoplanetary Disk', Astron. Astrophys. 338, 995–1005.Urey, H.C.: 1952, The Planets, Yale University Press, New Haven, Cincinnati.

    ADS  Google Scholar 

  • Wurm, G., and Blum, J.: 1998, 'Experiments on Preplanetary Dust Aggregation', Icarus 132, 125–136.

    Article  ADS  Google Scholar 

  • Zolotov, M.Yu., Fegley, B., Jr., and Lodders, K.: 1997, 'Hydrous Silicates and Water on Venus', Icarus 130, 475–494.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fegley, B. Kinetics of gas-Grain Reactions in the Solar Nebula. Space Science Reviews 92, 177–200 (2000). https://doi.org/10.1023/A:1005286910756

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005286910756

Navigation