Skip to main content
Log in

Structure-based functional inference in structural genomics

  • Published:
Journal of Structural and Functional Genomics

Abstract

The dramatically increasing number of new protein sequences arising from genomics 4 proteomics requires the need for methods to rapidly and reliably infer the molecular and cellular functions of these proteins. One such approach, structural genomics, aims to delineate the total repertoire of protein folds in nature, thereby providing three-dimensional folding patterns for all proteins and to infer molecular functions of the proteins based on the combined information of structures and sequences. The goal of obtaining protein structures on a genomic scale has motivated the development of high throughput technologies and protocols for macromolecular structure determination that have begun to produce structures at a greater rate than previously possible. These new structures have revealed many unexpected functional inferences and evolutionary relationships that were hidden at the sequence level. Here, we present samples of structures determined at Berkeley Structural Genomics Center and collaborators’ laboratories to illustrate how structural information provides and complements sequence information to deduce the functional inferences of proteins with unknown molecular functions.

Two of the major premises of structural genomics are to discover a complete repertoire of protein folds in nature and to find molecular functions of the proteins whose functions are not predicted from sequence comparison alone. To achieve these objectives on a genomic scale, new methods, protocols, and technologies need to be developed by multi-institutional collaborations worldwide. As part of this effort, the Protein Structure Initiative has been launched in the United States (PSI; www.nigms.nih.gov/funding/psi.html). Although infrastructure building and technology development are still the main focus of structural genomics programs [1−6], a considerable number of protein structures have already been produced, some of them coming directly out of semi-automated structure determination pipelines [6−10]. The Berkeley Structural Genomics Center (BSGC) has focused on the proteins of Mycoplasma or their homologues from other organisms as its structural genomics targets because of the minimal genome size of the Mycoplasmas as well as their relevance to human and animal pathogenicity (http://www.strgen.org). Here we present several protein examples encompassing a spectrum of functional inferences obtainable from their three-dimensional structures in five situations, where the inferences are new and testable, and are not predictable from protein sequence information alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dieckman, L., Gu, M., Stols, L., Donnelly, M. I. and Collart, F. R. (2002) Protein Expr. Purif. 25, 1-7.

    Google Scholar 

  2. Pédelacq, J., Piltch, E., Liong, E. C., Berendzen, J., Kim, C.-Y., Rho, B.-S., Park, M. S., Terwilliger, T. C. and Waldo, G. S. (2002) Nat. Biotechnol. 20, 927-932.

    Google Scholar 

  3. Chayen, N. E. and Saridakis, E. (2002) Acta Crystallogr. D 58, 921-927.

    Google Scholar 

  4. Karain, W. I., Bourenkov, G. P. Blume, H. and Bartunik, H. D. (2002) Acta Crystallogr. D 58, 1519-1522.

    Google Scholar 

  5. Bhavesh, N. S., Panchal, S. C., and Hosur, R. V. (2001) Biochemistry 40, 14727-14735.

    Google Scholar 

  6. Rupp, B., Segelke, B. W., Krupka, H. I., Lekin, T., Schäfer, J., Zemla, A., Toppani, D., Snell, G. and Earnest, T. (2002) Acta Crystallogr. D 58, 1514-1518.

    Google Scholar 

  7. Christendat, D., Yee, A., Dharamsi, A., Kluger, Y., Savchenko, A., Cort, J. R., Booth, V., Mackereth, C. D., Saridakis, V., Ekiel, I., Kozlov, G., Maxwell, K. L., Wu, N., McIntosh, L. P., Gehring, K., Kennedy, M. A., Davidson, A. R., Pai, E. F., Gerstein, M., Edwards, A. M. and Arrowsmith, C. H. (2000) Nat. Struct. Biol. 7, 903-909.

    Google Scholar 

  8. Lesley, S. A., Kuhn, P., Godzik, A., Deacon, A. M., Mathews, I., Kreusch, A., Spraggon, G., Klock, H. E., McMullan, D., Shin, T., Vincent, J., Robb, A., Brinen, L. S., Miller, M. D., McPhillips, T. M., Miller, M. A., Scheibe, D., Canaves, J. M., Guda, C., Jaroszewski, L., Selby, T. L., Elsliger, M. A., Wooley, J., Taylor, S. S., Hodgson, K. O., Wilson, I. A., Schultz, P. G. and Stevens, R. C. (2002) Proc. Natl. Acad. Sci. USA. 99, 11664-11669.

    Google Scholar 

  9. Burley, S. K. and Bonanno, J. B. (2002) Curr. Opin. Struct. Biol. 12, 383-391.

    Google Scholar 

  10. Yee, A., Chang, X., Pineda-Lucena, A., Wu, B., Semesi, A., Le, B., Ramelot, T., Lee, G. M., Bhattacharyya, S., Gutierrez, P., Denisov, A., Lee, C. H., Cort, J. R., Kozlov, G., Liao, J., Finak, G., Chen, L., Wishart, D., Lee, W., McIntosh, L. P., Gehring, K., Kennedy, M. A., Edwards, A. M. and Arrowsmith, C. H. (2002) Proc. Natl. Acad. Sci. USA. 99, 1825-1830.

    Google Scholar 

  11. Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D. and Zardecki, C. (2002) Acta Crystallogr. D 58, 899-907.

    Google Scholar 

  12. Huang, L., Hung, L. W., Odell, M., Yokota, H., Kim, R. and Kim, S.-H. 2002. J. Struct. Funct. Genomics 2, 121-127.

    Google Scholar 

  13. Holm, L. and Sander, C. (1995) Trends Biochem. Sci. 20, 478-480.

    Google Scholar 

  14. Zarembinski, T. I., Hung, L. W., Mueller-Dieckmann, H. J., Kim, K. K., Yokota, H., Kim, R., Kim, S. H. (1998) Proc. Natl. Acad. Sci. USA. 95, 15189-15193.

    Google Scholar 

  15. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L. and Sonnhammer, E. L. (2000) Nucleic Acid Res. 28, 263-266.

    Google Scholar 

  16. Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A., Shankavaram, U. T., Rao, B. S., Kiryutin, B., Galperin, M. Y., Fedorova, N. D. and Koonin, E. V. (2001) Nucleic Acids Res. 29, 22-28.

    Google Scholar 

  17. Schulze-Gahmen, U., Pelaschier, J., Yokota, H., Kim, R. and Kim, S.-H. (2003) Proteins 50, 526-530.

    Google Scholar 

  18. Hwang, K.Y., Chung, J. H., Kim, S.-H., Han, Y. S. and Cho, Y. (1999) Nat. Struct. Biol. 6, 691-696.

    Google Scholar 

  19. Noskov, V.N., Staak, K., Shcherbakova, P. V., Kozmin, S. G., Negishi, K., Ono, B. C., Hayatsu, H. and Pavlov, Y. I. (1996) Yeast 12, 17-29.

    Google Scholar 

  20. Kim, K. K., Kim, R., and Kim, S.-H. (1998) Nature 394, 595-599.

    Google Scholar 

  21. Dandekar, T., Huynen, M., Regula, J. T., Ueberle, B., Zimmermann, C. U., Andrade, M. A., Doerks, T., Sanchez-Pulido, L., Snel, B., Suyama, M., Yuan, Y. P., Herrmann, R. and Bork, P. (2000) Nucleic Acids Res. 28, 3278-3288.

    Google Scholar 

  22. Marchler-Bauer, A., Panchenko, A. R., Shoemaker, B. A., Thiessen, P. A., Geer, L. Y. and Bryant, S. H. (2002) Nucleic Acids Res. 30, 281-283.

    Google Scholar 

  23. Choi, I.-G., Shin, D. H., Brandsen, J., Jancarik, J., Busso, D., Yokota, H., Kim, R. and Kim, S.-H. (2003). J. Struct. Funct. Genomics 4, 31-34.

    Google Scholar 

  24. Schroder, E., Littlechild, J. A., Lebedev, A. A., Errington, N., Vagin, A. A. and Isupov, M. N. (2000) Structure Fold Des. 8, 605-615.

    Google Scholar 

  25. Shin, D. H., Yokota, H., Kim, R. and Kim, S.-H. (2002) Proc. Natl. Acad. Sci. USA. 99, 7980-7985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SH., Shin, D.H., Choi, IG. et al. Structure-based functional inference in structural genomics. J Struct Func Genom 4, 129–135 (2003). https://doi.org/10.1023/A:1026200610644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026200610644

Navigation