Skip to main content
Log in

Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Results from studies of human subjects suggest that the multifocal ERG technique developed by Erich Sutter and colleagues has considerable potential for assessment of retinal function in both the clinic and laboratory. While the utility of this measure depends to a large extent upon an understanding of the physiological origin for the different response components, relatively little is known in this regard. For the experiments described in this report, we made ERG recordings using both multifocal and conventional methods. Intravitreal injections of APB, PDA, and TTX were used to identify contributions from activity in ON pathway, OFF pathway, and third order retinal neurons, respectively. The results show that photoreceptor activity makes a small direct contribution to 1st and 2nd order multifocal photopic luminance responses. TTX-sensitive activity in third order retinal neurons contributes to both 1st and 2nd order responses with relatively greater contribution to the 2nd order response. Blockade of TTX-sensitive activity in third order cells produces effects on the 2nd order response which are very similar to changes observed in eyes suffering selective loss of retinal ganglion cells resulting from experimental glaucoma. Effects of these intravitreally injected test agents were also determined, in the same recording session, for flash, 30 Hz flicker, and oscillatory potential responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awatramani G, Wang J, Slaughter M. Amacrine and ganglion cell contributions to the electroretinogram in amphibian retina. Visual Neuroscience, 18: 2001; 147–156

    Google Scholar 

  2. Barnes S, Werblin F. Gated currents generate single spike activity in amacrine cells of the tiger salamander retina. Proc. Nat. Acad. Sci. 1986; 83: 1509–1512.

    Google Scholar 

  3. Barnes S, Hille B. Ionic channels of the inner segment of tiger salamander cone photoreceptors. J. General Physiol. 1989: 94: 719–743.

    Google Scholar 

  4. Bloomfield SA., Dowling JE. Roles of aspartate and glutamate in synaptic transmission in rabbit retina. I. Outer plexiform layer. J. Neurophysiol. 1985; 53: 699–713.

    Google Scholar 

  5. Bloomfield SA, Dowling JE. Roles of aspartate and glutamate in synaptic transmission in rabbit retina. II. Inner plexiform layer. J. Neurophysiol. 1985; 53: 714–725.

    Google Scholar 

  6. Bloomfield SA. Effect of spike blockade on the receptive field size of amacrine and ganglion cells in the rabbit retina. J. Neurophysiol. 1996; 75: 1878–1893.

    Google Scholar 

  7. Boos R, Schneider H, Wassle H. Voltage-and transmitter-gated currents of AII-amacrine cells in a slice preparation of the rat retina. J. Neurosci. 1993; 13: 2874–2888.

    Google Scholar 

  8. Bush RA, Sieving PA. A proximal retinal component in the primate photopic ERG a-wave. Investigative Ophthalmology & Visual Sci., 1994; 35: 635–645.

    Google Scholar 

  9. Bush RA, Sieving PA. Inner retinal contributions to the primate photopic fast flicker electroretinogram. J. Optical Soc. Am. 1996; 13: 557–565.

    Google Scholar 

  10. Chao TI, Pannicke T, Reichelt W, Reichenbach A. Na+ channels are expressed by mammalian retinal glial (Muller) cells. Neuroreport, 1993; 4: 575–578.

    Google Scholar 

  11. Cohen ED, Miller RF. The role of NMDA and non-NMDA excitatory amino acid receptors in the functional organization of primate retinal ganglion cells. Visual Neurosci., 1994; 11: 317–332

    Google Scholar 

  12. Cook PB, Lukasiewicz PD, McReynolds JS. Action potentials are required for the lateral transmission of glycinergic transient inhibition in the amphibian retina. J. Neurosci., 1998; 18: 2301–2308.

    Google Scholar 

  13. Dacheux RF, Raviola E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J. Neurosci. 1986; 6: 331–345.

    Google Scholar 

  14. Dick E, Miller RF. Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram. Brain Research, 1978; 154: 388–394.

    Google Scholar 

  15. Dolan RP, Schiller PH. Evidence for only depolarizing rod bipolar cells in the primate retina. Visual Neurosci., 1989; 2: 421–424.

    Google Scholar 

  16. Dong C-J, Hare WA. Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina. Vision Res. 2000; 40: 579–589.

    Google Scholar 

  17. Famiglietti EV Jr, Kolb H. A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Res., 1975; 84: 293–300.

    Google Scholar 

  18. Hare WA, Owen WG. Spatial organization of the bipolar cell's receptive field in the retina of the tiger salamander. J. Physiol. (London), 1990; 421: 223–245.

    Google Scholar 

  19. Hare WA, Owen WG. Effects of 2-amino-4-phosphonobutyric acid on cells in the distal layers of the tiger salamander's retina. J. Physiol. (London), 1992; 445: 741–757.

    Google Scholar 

  20. Hare WA, Owen WG. Similar Effects of carbachol and dopamine on neurons in the distal retina of the tiger salamander. Visual Neurosci. 1995; 12: 443–55.

    Google Scholar 

  21. Hare W, WoldeMussie E, Ton H, Feldmann B, Wijono M, Ruiz G. Electrophysiological and histological measures of retinal injury in chronic ocular hypertensive monkeys. Investigative Ophthalmology & Visual Sci. (Suppl), 1998; 39: S493.

    Google Scholar 

  22. Hare W, Ton H, WoldeMussie E, Ruiz G, Feldmann B, Wijono M. Electrophysiological and histological measures of retinal injury in chronic ocular hypertensive monkeys. European Journal of Ophthalmology (Suppl). 1999; 9: S30–S33.

    Google Scholar 

  23. Hare W, Ton H, Ruiz G, Feldmann B, Wijono M, WoldeMussie E. Characterization of Retinal Injury Using ERG Measures Obtained with both Conventional and Multifocal Methods in Chronic Ocular Hypertensive Primates. Investigative Ophthalmology & Visual Sci. 2001; 42: 127–36.

    Google Scholar 

  24. Hensley SH, Yang X, Wu SM. Identification of glutamate receptor subtypes mediating inputs to bipolar cells and ganglion cells in the tiger salamander retina. J. Neurophysiol. 1994; 69: 2099–107.

    Google Scholar 

  25. Hille B. Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature (London), 1966; 210: 1220–2.

    Google Scholar 

  26. Hood DC, Seiple W, Holopigian K, Greenstein V. A comparison of the components of the multifocal and full-field ERGs. Visual Neurosci. 1999; 14: 533–44.

    Google Scholar 

  27. Hood DC, Frishman LJ, Viswanathan S, Robson JG, Ahmed J. Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): Effects of TTX on the multifocal ERG in macaque. Visual Neurosci. 1999a; 16: 411–16.

    Google Scholar 

  28. Hood DC, Greenstein V, Frishman L, Holopigian K, Viswanathan S, Seiple W, Ahmad J, Robson JG. Identifying inner retinal contributions to the human multifocal ERG. Vision Res. 1999b; 39: 2285–91.

    Google Scholar 

  29. Hood DC. Assessing retinal function with the multifocal technique. Prog Retinal and Eye Res. 2000; 19; 607–46.

    Google Scholar 

  30. Ishida AT. Regenerative sodium and calcium currents in goldfish retinal ganglion cell somata. Vision Res. 1991; 31: 477–85.

    Google Scholar 

  31. Jardon B, Yucel H, Bonaventure N. Glutamatergic separation of ON and OFF retinal channels: possible modulation by glycine and acetylcholine. European J. Pharmacol. 1989; 162: 215–24.

    Google Scholar 

  32. Kaneko A, Tachibana M. A voltage-clamp analysis of membrane currents in solitary bipolar cells dissociated from Carassius auratus. J. Physiol. (London), 1995; 358: 131–152.

    Google Scholar 

  33. Karschin A, Wassle H. Voltage-and transmitter-gated currents in isolated rod bipolar cells of rat retina. J. Neurophysiol. 1990; 63: 860–76.

    Google Scholar 

  34. Kline RP, Ripps H, Dowling JE. Generation of b-wave currents in the skate retina. Proc. Nat. Acad. Sci. 1978; 75: 5727–31.

    Google Scholar 

  35. Knapp AG, Schiller PH. The contribution of ON-bipolar cells to the electroretinogram of rabbits and monkeys. Vision Res. 1984; 24: 1841–46.

    Google Scholar 

  36. Lasater EM. Membrane properties of distal retinal neurons. In: Osborne NN, Chader GJ, eds. Prog. Ret. Eye Res. (pp 215–246). Oxford: Pergamon Press.

  37. Lipton SA, Tauck DL. Voltage-dependent conductances of solitary ganglion cells dissociated from the rat retina. J. Physiol. (London), 1987; 385: 361–91.

    Google Scholar 

  38. Lohrke S, Hofmann HD. Voltage-gated currents of rabbit A-and B-type horizontal cells in retinal monolayer cultures. Visual Neurosci. 1994; 11: 369–78.

    Google Scholar 

  39. Massey SC, Redburn DA, Crawford MLJ. The effects of 2-amino-4-phosphonobutyric acid (APB) on the ERG and ganglion cell discharge of rabbit retina. Vision Res. 1983; 23: 1607–13.

    Google Scholar 

  40. Massey SC, Miller RF. Glutamate receptors of ganglion cells in the rabbit retina: evidence for glutamate as a bipolar cell transmitter. J. Physiol. (London), 1998; 405: 635–55.

    Google Scholar 

  41. Muller F, Wassle H, Voigt T. Phamacological modulation of the rod pathway in the cat retina. J Neurophysiol. 1988; 59: 1657–72.

    Google Scholar 

  42. Narahashi T, Moore JW, Scott WR. Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. General Physiol. 1964; 47: 965–74.

    Google Scholar 

  43. Newman EA. Current source-density analysis of the b-wave of frog retina. J. Neurophysiol. 1998; 43: 1355–66.

    Google Scholar 

  44. Newman EA, Frishman LJ. The b-wave. In: Heckenlively JR, Arden GB, eds. Principles and Practice of Clinical Electrophysiology of Vision (pp 101–111). Mosby.

  45. Saszik SM, Frishman LJ, Harwerth R, Viswanathan S, Hood DC, Smith III, EL, Robson JG. Alterations in the MERG waveform in primates with experimental glaucoma or pharmacological suppression of inner retinal activity. Investigative Ophthalmology & Visual Sci. (Suppl). 2000; 41: S291.

    Google Scholar 

  46. Shiells RA, Falk G, Naghshineh S. Action of glutamate and aspartate analogues on rod horizontal and bipolar cells. Nature (London), 1981; 294: 592–94.

    Google Scholar 

  47. Sieving PA, Murayama K, Naarendorp F. Push-pull model of the primate photopic electroretinogram: A role for hyperpolarizing neurons in shaping the b-wave. Visual Neurosci., 1994; 11: 519–32.

    Google Scholar 

  48. Slaughter MM, Miller RF. 2-amino-4-phosphonobutyric acid: A new pharmacological tool for retinal research. Sci. 1981; 211: 182–85.

    Google Scholar 

  49. Slaughter MM, Miller RF. An excitatory amino acid antagonist blocks cone input to sign-conserving 2nd order retinal neurons. Sci. 1983a; 219: 1230–2.

    Google Scholar 

  50. Slaughter MM, Miller RF. Bipolar cells in the mudpuppy retina use an excitatory amino acid neurotransmitter. Nature (London), 1983b; 303: 537–8.

    Google Scholar 

  51. Sterling P, Freed MA, Smith RG. Architecture of rod and cone circuits to the on-beta ganglion cell. J Neurosci. 1988; 8: 623–42.

    Google Scholar 

  52. Stockton RA, Slaughter MM. B-wave of the electroretinogram; A reflection of ON bipolar cell activity. J. General Physiol. 1989; 93: 101–22.

    Google Scholar 

  53. Sutter EE, Tran D. The field topography of ERG components in man-I. The photopic luminance response. Vision Res. 1992; 32: 433–46.

    Google Scholar 

  54. Sutter EE, Bearse MA. The optic nerve head component of the human ERG. Vision Res. 1999; 39: 419–36.

    Google Scholar 

  55. Ueda Y, Kaneko A, Kaneda M. Voltage-dependent ionic currents in solitary horizontal cells isolated from cat retina. J. Neurophysiol. 1992; 68: 1143–50.

    Google Scholar 

  56. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Investigative Ophthalmology & Visual Sci. 1999; 40: 1124–36.

    Google Scholar 

  57. Viswanathan S, Frishman LJ, Robson JG. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Investigative Ophthalmology & Visual Sci. 2000; 41: 2797–810.

    Google Scholar 

  58. Wassle H, Yamashita M, Greferath U, Grunert U, Muller F. The rod bipolar cell of the mammalian retina. Visual Neurosci. 1991; 7: 99–112.

    Google Scholar 

  59. Werblin FS, Dowling JE. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 1969; 32: 339–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hare, W.A., Ton, H. Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey. Doc Ophthalmol 105, 189–222 (2002). https://doi.org/10.1023/A:1020553020264

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020553020264

Navigation