Skip to main content
Log in

Full-field electroretinogram response to increment and decrement stimuli

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

The d-wave is typically elicited after the termination of an increment flash, but a decrement flash provides an alternative, and perhaps more appropriate, stimulus to elicit the d-wave. Here, we investigated the affects of stimulus polarity on the electroretinogram (ERG) response.

Methods

ERG responses elicited to increment and decrement flashes of varying intensity and duration from different background levels were measured from human participants to assess the b-wave and d-wave responses as a function of adaptation level and flash polarity. Response amplitudes were measured using standard metrics for waveform analysis.

Results

The amplitude of the b-wave is larger than the d-wave regardless of flash polarity when using different background levels which maximized the dynamic range of the two waveforms. However, when response amplitudes are measured from a common background, the d-wave elicited with decrement flash was larger than the b-wave elicited by an increment flash. This trend was evident across a range of background levels. The b-wave and d-wave become separate entities when flash duration reaches approximately 50 ms. Rapid-on and rapid-off sawtooth stimuli were also tested against increment and decrement step stimuli that were matched in mean luminance. These two stimulus types produced different amplitude b-wave and d-wave responses, suggesting asymmetric effects of the two stimulus types on the retinal response.

Conclusions

We conclude that the response properties of the b-wave and d-wave are influenced by the duration, polarity and waveform of the stimulus, as well as the background from which the stimuli arise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bush RA, Sieving PA (1994) A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci 35(2):635–645

    PubMed  CAS  Google Scholar 

  2. Robson JG, Saszik SM, Ahmed J, Frishman LJ (2003) Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol 547(Pt 2):509–530

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Friedburg C, Allen CP, Mason PJ, Lamb TD (2004) Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram. J Physiol 556(Pt 3):819–834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Ueno S, Kondo M, Ueno M, Miyata K, Terasaki H, Miyake Y (2006) Contribution of retinal neurons to d-wave of primate photopic electroretinograms. Vis Res 46(5):658–664

    Article  PubMed  Google Scholar 

  5. Stockton RA, Slaughter MM (1989) B-wave of the electroretinogram: a reflection of ON bipolar cell activity. J Gen Physiol 93(1):101–122

    Article  PubMed  CAS  Google Scholar 

  6. Tian N, Slaughter MM (1995) Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram. Vis Res 35(10):1359–1364

    Article  PubMed  CAS  Google Scholar 

  7. Knapp AG, Schiller PH (1984) The contribution of ON bipolar cells to the electroretinogram of rabbits and monkeys. Vis Res 24:1841–1846

    Article  PubMed  CAS  Google Scholar 

  8. Sieving PA, Murayama K, Naarendorp F (1994) Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11(3):519–532

    Article  PubMed  CAS  Google Scholar 

  9. Alexander KR, Fishman GA, Peachey NS, Marchese AL, Tso MO (1992) ‘On’ response defect in paraneoplastic night blindness with cutaneous malignant melanoma. Invest Ophthalmol Vis Sci 33(3):477–483

    PubMed  CAS  Google Scholar 

  10. Sustar M, Hawlina M, Brecelj J (2006) ON- and OFF-response of the photopic electroretinogram in relation to stimulus characteristics. Doc Ophthalmol 113(1):43–52

    Article  PubMed  Google Scholar 

  11. Evers HU, Gouras P (1986) Three cone mechanisms in the primate electroretinogram: two with, one without off-center bipolar responses. Vis Res 26(2):245–254

    Article  PubMed  CAS  Google Scholar 

  12. Seiple W, Holopigian K (1994) The ‘OFF’ response of the human electroretinogram does not contribute to the brief flash ‘b-wave’. Vis Neurosci 11(4):667–673

    Article  PubMed  CAS  Google Scholar 

  13. Horn FK, Gottschalk K, Mardin CY, Pangeni G, Junemann AG, Kremers J (2011) On and off responses of the photopic fullfield ERG in normal subjects and glaucoma patients. Doc Ophthalmol 122(1):53–62

    Article  PubMed  Google Scholar 

  14. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40(6):1124–1136

    PubMed  CAS  Google Scholar 

  15. Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41(9):2797–2810

    PubMed  CAS  Google Scholar 

  16. Kondo M, Piao CH, Tanikawa A, Horiguchi M, Terasaki H, Miyake Y (2000) Amplitude decrease of photopic ERG b-wave at higher stimulus intensities in humans. Jpn J Ophthalmol 44(1):20–28

    Article  PubMed  CAS  Google Scholar 

  17. Alexander KR, Fishman GA, Barnes CS, Grover S (2001) On-response deficit in the electroretinogram of the cone system in X-linked retinoschisis. Invest Ophthalmol Vis Sci 42(2):453–459

    PubMed  CAS  Google Scholar 

  18. Dryja TP, McGee TL, Berson EL, Fishman GA, Sandberg MA, Alexander KR, Derlacki DJ, Rajagopalan AS (2005) Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci USA 102(13):4884–4889

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Rodrigues AR, Filho Mda S, Silveira LC, Kremers J (2010) Spatial distributions of on- and off-responses determined with the multifocal ERG. Doc Ophthalmol 120(2):145–158

    Article  PubMed  Google Scholar 

  20. Hayhoe MM, Benimoff NI, Hood DC (1987) The time-course of multiplicative and subtractive adaptation process. Vis Res 27(11):1981–1996

    Article  PubMed  CAS  Google Scholar 

  21. Johnson MA, Massof RW (1982) The photomyoclonic reflex: an artefact in the clinical electroretinogram. Br J Ophthalmol 66(6):368–378

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118(1):69–77

    Article  PubMed  CAS  Google Scholar 

  23. Wali N, Leguire LE (1992) The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 80(4):335–345

    Article  PubMed  CAS  Google Scholar 

  24. Ueno S, Kondo M, Niwa Y, Terasaki H, Miyake Y (2004) Luminance dependence of neural components that underlies the primate photopic electroretinogram. Invest Ophthalmol Vis Sci 45(3):1033–1040

    Article  PubMed  Google Scholar 

  25. Kremers J, Lee BB, Pokorny J, Smith VC (1993) Responses of macaque ganglion cells and human observers to compound periodic waveforms. Vis Res 33(14):1997–2011

    Article  PubMed  CAS  Google Scholar 

  26. Alexander KR, Barnes CS, Fishman GA (2003) ON-pathway dysfunction and timing properties of the flicker ERG in carriers of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci 44(9):4017–4025

    Article  PubMed  Google Scholar 

  27. Barnes CS, Alexander KR, Fishman GA (2002) A distinctive form of congenital stationary night blindness with cone ON-pathway dysfunction. Ophthalmology 109(3):575–583

    Article  PubMed  Google Scholar 

  28. Barboni MT, Nagy BV, de Araujo Moura AL, Damico FM, da Costa MF, Kremers J, Ventura DF (2013) ON and OFF electroretinography and contrast sensitivity in Duchenne muscular dystrophy. Invest Ophthalmol Vis Sci 54 (5):3195–3204

  29. Pangeni G, Lammer R, Tornow RP, Horn FK, Kremers J (2012) On- and off-response ERGs elicited by sawtooth stimuli in normal subjects and glaucoma patients. Doc Ophthalmol 124 (3):237–248

  30. Naarendorp F, Williams GE (1999) The d-wave of the rod electroretinogram of rat originates in the cone pathway. Vis Neurosci 16(1):91–105

    Article  PubMed  CAS  Google Scholar 

  31. Miyake Y, Yagasaki K, Horiguchi M, Kawase Y (1987) On- and off-responses in photopic electroretinogram in complete and incomplete types of congenital stationary night blindness. Jpn J Ophthalmol 31(1):81–87

    PubMed  CAS  Google Scholar 

  32. Quigley M, Roy MS, Barsoum-Homsy M, Chevrette L, Jacob JL, Milot J (1996) On- and off-responses in the photopic electroretinogram in complete-type congenital stationary night blindness. Doc Ophthalmol 92(3):159–165

    Article  PubMed  Google Scholar 

  33. Sieving PA (1993) Photopic ON- and OFF-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc 91:701–773

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Khan NW, Kondo M, Hiriyanna KT, Jamison JA, Bush RA, Sieving PA (2005) Primate retinal signaling pathways: suppressing ON-pathway activity in monkey with glutamate analogues mimics human CSNB1-NYX genetic night blindness. J Neurophysiol 93(1):481–492

    Article  PubMed  CAS  Google Scholar 

  35. Sustar M, Stirn-Kranjc B, Hawlina M, Brecelj J (2008) Photopic ON- and OFF-responses in complete type of congenital stationary night blindness in relation to stimulus intensity. Doc Ophthalmol 117(1):37–46

    Article  PubMed  Google Scholar 

  36. Kellner U, Bornfeld N, Foerster MH (1995) Severe course of cutaneous melanoma associated paraneoplastic retinopathy. Br J Ophthalmol 79(8):746–752

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Lei B, Bush RA, Milam AH, Sieving PA (2000) Human melanoma-associated retinopathy (MAR) antibodies alter the retinal ON-response of the monkey ERG in vivo. Invest Ophthalmol Vis Sci 41(1):262–266

    PubMed  CAS  Google Scholar 

  38. Khan NW, Jamison JA, Kemp JA, Sieving PA (2001) Analysis of photoreceptor function and inner retinal activity in juvenile X-linked retinoschisis. Vis Res 41(28):3931–3942

    Article  PubMed  CAS  Google Scholar 

  39. Shinoda K, Ohde H, Mashima Y, Inoue R, Ishida S, Inoue M, Kawashima S, Oguchi Y (2001) On- and off-responses of the photopic electroretinograms in X-linked juvenile retinoschisis. Am J Ophthalmol 131(4):489–494

    Article  PubMed  CAS  Google Scholar 

  40. Thompson DA, Lyons RJ, Liasis A, Russell-Eggitt I, Jagle H, Grunewald S (2012) Retinal on-pathway deficit in congenital disorder of glycosylation due to phosphomannomutase deficiency. Arch Ophthalmol 130(6):712–719

    Article  PubMed  Google Scholar 

  41. Usui T, Tanimoto N, Ueki S, Miki A, Takagi M, Hasegawa S, Abe H (2005) Night blindness with depolarizing pattern of ON/OFF response in electroretinogram: a case report. Doc Ophthalmol 111(1):15–21

    Article  PubMed  Google Scholar 

  42. Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42(2):514–522

    PubMed  CAS  Google Scholar 

  43. Pangeni G, Lammer R, Tornow RP, Horn FK, Kremers J (2012) On- and off-response ERGs elicited by sawtooth stimuli in normal subjects and glaucoma patients. Doc Ophthalmol 124(3):237–248

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul DeMarco Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vukmanic, E., Godwin, K., Shi, P. et al. Full-field electroretinogram response to increment and decrement stimuli. Doc Ophthalmol 129, 85–95 (2014). https://doi.org/10.1007/s10633-014-9455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-014-9455-9

Keywords

Navigation