Skip to main content
Log in

Rates of evolution on the time scale of the evolutionary process

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A generational time scale, involving change from one generation to the next, is the time scale of evolution by natural selection. Microevolutionary and macroevolutionary patterns reflect this process on longer time scales. Rates of evolution are most efficiently expressed in haldane units, H, in standard deviations per generation, indexed by the log of the time interval. Rates from replicated selection experiments and simulations have rate-interval [RI] and log rate-log interval [LRI] scaling relations enabling directional, stationary, and random time series to be distinguished. Empirical microevolutionary and macroevolutionary data exhibit stationary scaling, but point to generational rates of evolution (H 0) conservatively on the order of 0.2 standard deviations per generation on the time scale of the evolutionary process. This paradox of long-term stationary scaling and short-term high rates of change can be explained by considering the shape of an heuristic time-form evolutionary lattice. Cenozoic mammals occupy a lattice that is about four orders of magnitude longer in time than it has ever been wide in form. The evolutionary process is dynamic but operates within relatively narrow morphological constraints compared to the time available for change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alroy, J., 1998. Cope' rule and the dynamics of body mass evolution in North American fossil mammals. Science 280: 731–734.

    Google Scholar 

  • Barnosky, A.D., 1990. Evolution of dental traits since latest Pleistocene in meadow voles (Microtus pennsylvanicus) from Virginia. Paleobiology 16: 370–383.

    Google Scholar 

  • Bloch, J.I. & P.D. Gingerich, 1998. Carpolestes simpsoni, new species (Mammalia, Proprimates) from the late Paleocene of the Clarks Fork Basin, Wyoming. Contributions from the Museum of Paleontology, University of Michigan 30: 131–162.

    Google Scholar 

  • Clyde, W.C. & P.D. Gingerich, 1994. Rates of evolution in the dentition of early Eocene Cantius: comparison of size and shape. Paleobiology 20: 506–522.

    Google Scholar 

  • Colbert, E.H., 1948. Evolution of the horned dinosaurs. Evolution 2: 145–163.

    Google Scholar 

  • Darwin, C., 1859. The Origin of Species. John Murray, London. Reprinted 1964 by Harvard University Press, Cambridge.

    Google Scholar 

  • Dobzhansky, T., 1937. Genetics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Eldredge, N. & S.J. Gould, 1972. Punctuated equilibria: an alternative to phyletic gradualism, pp. 82–115 in Models in Paleobiology, edited by T.J.M. Schopf. Freeman, Cooper and Company, San Francisco.

    Google Scholar 

  • Falconer, D.S., 1973. Replicated selection for body weight in mice. Genetical Research, Cambridge 22: 291–321.

    Google Scholar 

  • Flynn, L.J., 1986. Species longevity, stasis, and stairsteps in rhizomyid rodents, pp. 273–285 in Vertebrates, Phylogeny, and Philosophy, edited by K.M. Flanagan & J.A. Lillegraven. University of Wyoming Contributions to Geology, Special Paper, Laramie.

  • Foote, M., 1994. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology 20: 424–444.

    Google Scholar 

  • Forstén, A.-M., 1990. Dental size trends in an equid sample from the Sandalja II cave of northwestern Yugoslavia. Paläontologische Zeitschrift, Stuttgart 64: 153–160.

    Google Scholar 

  • Geary, D.H., 1990. Patterns of evolutionary tempo and mode in the radiation of Melanopsis (Gastropoda; Melanopsidae). Paleobiology 16: 492–511.

    Google Scholar 

  • Gingerich, P.D., 1983. Rates of evolution: effects of time and temporal scaling. Science 222: 159–161.

    Google Scholar 

  • Gingerich, P.D., 1991. Systematics and evolution of early Eocene Perissodactyla (Mammalia) in the Clarks Fork Basin, Wyoming. Contributions from the Museum of Paleontology, University of Michigan 28: 181–213.

    Google Scholar 

  • Gingerich, P.D., 1993. Quantification and comparison of evolutionary rates. Am. J. Sci. 293A (Ostrom volume): 453–478.

    Google Scholar 

  • Gingerich, P.D., 1994. New species of Apheliscus, Haplomylus, and Hyopsodus (Mammalia, Condylarthra) from the late Paleocene of southern Montana and early Eocene of northwestern Wyoming. Contributions from the Museum of Paleontology, University of Michigan 29: 119–134.

    Google Scholar 

  • Gingerich, P.D., 1996. Rates of evolution in divergent species lineages as a test of character displacement in the fossil record: tooth size in Paleocene Plesiadapis (Mammalia, Proprimates), pp. 193–204 in Paléobiologie et Evolution des Mammifères Paléogènes: Volume Jubilaire en Hommage à Donald E. Russell, edited by M. Godinot & P.D. Gingerich. Palaeovertebrata, Montpellier.

    Google Scholar 

  • Gingerich, P.D., 2000. Arithmetic or geometric normality of biological variation: an empirical test of theory. J. Theor. Biol. 204: 201–221.

    Google Scholar 

  • Gingerich, P.D. & G.F. Gunnell, 1995. Rates of evolution in Paleocene-Eocene mammals of the Clarks Fork Basin, Wyoming, and a comparison with Neogene Siwalik lineages of Pakistan. Palaeogeog. Palaeocl. Palaeoecol. 115: 226–247.

    Google Scholar 

  • Gould, S.J., 1982. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution, pp. 83–104 in Perspectives on Evolution, edited by R. Milkman. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Haldane, J.B.S., 1949. Suggestions as to quantitative measurement of rates of evolution. Evolution 3: 51–56.

    Google Scholar 

  • Heaton, T.H., 1993. The Oligocene rodent Ischyromys of the Great Plains: replacement mistaken for anagenesis. J. Paleontol. 67: 297–308.

    Google Scholar 

  • Hendry, A.P. & M.T. Kinnison, 1999. The pace of modern life: measuring rates of contemporary microevolution. Evolution 53: 1637–1653.

    Google Scholar 

  • King, J.E. & J.J. Saunders, 1984. Environmental insularity and the extinction of the American mastodont, pp. 315–339 in Quaternary Extinctions: A Prehistoric Revolution, edited by P.S. Martin & R.G. Klein. University of Arizona Press, Tucson.

    Google Scholar 

  • Klein, R.G., 1995. The Tor Hamar fauna, pp. 405–416 in Prehistoric Cultural Ecology and Evolution: Insights from Southern Jordan, edited by D.O. Henry. Plenum, New York.

    Google Scholar 

  • Lande, R., 1977. On comparing coefficients of variation. Systematic Zoology 26: 214–217.

    Google Scholar 

  • Lande, R., 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30: 314–334.

    Google Scholar 

  • Lande, R. & S.J. Arnold, 1983. The measurement of selection on correlated characters. Evolution 37: 1210–1226.

    Google Scholar 

  • Lerman, A., 1965. On rates of evolution of unit characters and character complexes. Evolution 19: 16–25.

    Google Scholar 

  • Lewontin, R.C., 1966. On the measurement of relative variability. Systemat. Zool. 15: 141–142.

    Google Scholar 

  • Lich, D.K., 1990. Cosomys primus: a case for stasis. Paleobiology 16: 384–395.

    Google Scholar 

  • Lister, A.M., 1989. Rapid dwarfing of red deer on Jersey in the last interglacial. Nature 342: 539–542.

    Google Scholar 

  • Lynch, M., 1990. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Natural. 136: 727–741.

    Google Scholar 

  • Maglio, V.J., 1973. Origin and evolution of the Elephantidae. Transactions of the American Philosophical Society 63: 1–149.

    Google Scholar 

  • Malmgren, B.A., W.A. Berggren & G.P. Lohmann, 1983. Evidence for punctuated gradualism in the late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9: 377–389.

    Google Scholar 

  • Mandelbrot, B.B., 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156: 636–638.

    Google Scholar 

  • Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. W.H. Freeman, San Francisco.

    Google Scholar 

  • McDonald, J.N., 1981. North American Bison: Their Classification and Evolution. University of California Press, Berkeley.

    Google Scholar 

  • McShea, D.W. & D.M. Raup, 1986. Completeness of the geological record. J. Geol. 94: 569–574.

    Google Scholar 

  • Polly, P.D., 1997. Ancestry and species definition in paleontology: a stratocladistic analysis of Paleocene-Eocene Viverravidae (Mammalia, Carnivora) from Wyoming. Contributions from the Museum of Paleontology, University of Michigan 30: 1–53.

    Google Scholar 

  • Prothero, D.R. & T.H. Heaton, 1996. Faunal stability during the early Oligocene climatic crash. Palaeogeo. Palaeocl. Palaeoecol. 127: 257–283.

    Google Scholar 

  • Reznick, D.N., F.H. Shaw, F.H. Rodd & R.G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937.

    Google Scholar 

  • Roff, D.A., 1997. Evolutionary Quantitative Genetics. Chapman and Hall, New York.

    Google Scholar 

  • Rose, K.D., 1981. Composition and species diversity in Paleocene and Eocene mammal assemblages: an empirical study. J. Verteb. Paleontol. 1: 367–388.

    Google Scholar 

  • Ruff, C.B., E. Trinkaus & T.W. Holliday, 1997. Body mass and encephalization in Pleistocene Homo. Nature 387: 173–176.

    Google Scholar 

  • Sadler, P.M., 1981. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89: 569–584.

    Google Scholar 

  • Sadler, P.M., 1993. Time scale dependence of the rates of unsteady geologic processes, pp. 221–228 in Rates of Geologic Processes: Tectonics, Sedimentation, Eustasy, and Climate. Implications for Hydrocarbon Exploration, edited by J.M. Armentrout, R. Bloch, H.C. Olson & B.F. Perkins. Gulf Coast Section, SEPM Foundation: 14th Annual Research Conference, Baton Rouge, Louisiana.

  • Sokal, R.R. & F.J. Rohlf, 1981. Biometry. W.H.Freeman, San Francisco, 2nd edn.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gingerich, P.D. Rates of evolution on the time scale of the evolutionary process. Genetica 112, 127–144 (2001). https://doi.org/10.1023/A:1013311015886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013311015886

Navigation