Skip to main content

Macroevolution

  • Reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

Macroevolution is the study of patterns and processes associated with evolutionary change at and above the species level, and includes investigations of both evolutionary tempo and mode. Tempo refers to the rate or pace of change, whereas mode refers to how that change occurs. Both the tempo and mode of macroevolution are difficult to predict based solely on the study of populations, organisms, and genes – the realm of microevolution. Important macroevolutionary discoveries include the observation that species rarely accrue net morphological change over their lifespans of millions of years, that episodes of mass extinction substantially modify the evolutionary trajectory of life on Earth, and that variation in rates of speciation, extinction, and morphological change occurs over time, in different habitats, and across groups. The potential disconnect between microevolution and macroevolution suggests different processes may operate at different levels of biological organization, and at different spatial and temporal scales. Thus, macroevolution should be considered in concert with microevolution when determining the processes that have shaped the coevolution of Earth and life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alroy J (2008) Dynamics of origination and extinction in the marine fossil record. Proc Natl Acad Sci 105:11536–11542

    Article  CAS  Google Scholar 

  • Alroy J (2015) A more precise speciation and extinction rate estimator. Paleobiology 41:633–639

    Article  Google Scholar 

  • Balseiro D, Powell MG (2020) Carbonate collapse and the late Paleozoic ice age marine biodiversity crisis. Geology 20:118–122

    Article  Google Scholar 

  • Bambach RK (2006) Phanerozoic biodiversity mass extinctions. Annu Rev Earth Planet Sci 34:127–155

    Article  CAS  Google Scholar 

  • Barnosky AD (2001) Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J Vertebr Paleontol 21:172–185

    Article  Google Scholar 

  • Benton MJ (1996) Testing the roles of competition and expansion in tetrapod evolution. Proc R Soc B 263:641–646

    Article  Google Scholar 

  • Bond D, Grasby SE (2017) On the causes of mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 478:3–29

    Article  Google Scholar 

  • Brett CE, Ivany LC, Schopf KM (1996) Coordinated stasis: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology 127:1–20

    Google Scholar 

  • Condamine FL, Rolland J, Morlon H (2019) Assessing the causes of diversification slowdowns: temperature‐dependent and diversity-dependent models receive equivalent support. Ecology Letters 22:1900–1912

    Google Scholar 

  • Daane JM, Dornburg A, Smits P, MacGuigan DJ, Hawkins MB, Near TJ, Detrich HW III, Harris MP (2019) Historical contingency shapes adaptive radiation in Antarctic fishes. Nat Ecol Evol 3:1102–1109

    Article  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman Cooper, San Francisco, pp 82–115

    Google Scholar 

  • Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D, Jackson JBC, Lenski RE, Lieberman BS, McPeek MA, Miller W III (2005) The dynamics of evolutionary stasis. Paleobiology 31:133–145

    Article  Google Scholar 

  • Erwin DH (2001) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci 98:5399–5403

    Article  CAS  Google Scholar 

  • Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097

    Article  CAS  Google Scholar 

  • Fan JX, Shen SZ, Erwin DH, Sadler PM, MacLeod N, Cheng QM, Zhang H (2020) A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367(6475):272–277

    Google Scholar 

  • Futuyma DJ (2015) Can modern evolutionary theory explain macroevolution? In: Serelli E, Gontier N (eds) Macroevolution. Springer, Cham, pp 29–85

    Chapter  Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Grant PR, Grant BR (2011) How and why species multiply: the radiation of Darwin’s finches. Princeton University Press, Princeston

    Google Scholar 

  • Harnik PG, Lotze HK, Anderson SC, Finkel ZV, Finnegan S, Lindberg DR, Liow LH, Lockwood R, McClain CR, McGuire JL (2012) Extinctions in ancient and modern seas. Trends Ecol Evol 27(11):608–617

    Article  Google Scholar 

  • Hunt G (2012) Measuring rates of phenotypic evolution and the inseparability of tempo and mode. Paleobiology 38:351–373

    Article  Google Scholar 

  • Jablonski D (2008a) Extinction and the spatial dynamics of biodiversity. Proc Natl Acad Sci 105:11528–11535

    Article  CAS  Google Scholar 

  • Jablonski D (2008b) Species selection: theory and data. Annu Rev Ecol Evol Syst 39:501–524

    Article  Google Scholar 

  • Jablonski D (2017) Approaches to macroevolution: 1. General concepts and origin of variation. Evol Biol 14:427–450

    Article  Google Scholar 

  • Kaiser SI, Aretz M, Becker RT (2016) The global Hangenberg Crisis (Devonian–Carboniferous transition): review of a first-order mass extinction. Geol Soc Lond Spec Publ 423:387–437

    Article  Google Scholar 

  • Kiessling W, Aberhan M, Brenneis B, Wagner PJ (2007) Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 244:201–222

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  Google Scholar 

  • Lieberman BS (2012) Adaptive radiations in the context of macroevolutionary theory: a paleontological perspective. Evol Biol 39:181–191

    Article  Google Scholar 

  • McGhee GR Jr, Clapham ME, Sheehan PM, Bottjer DJ, Droser ML (2013) A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr Palaeoclimatol Palaeoecol 370:260–270

    Article  Google Scholar 

  • Myers CE, Saupe EE (2013) A macroevolutionary expansion of the modern synthesis and the importance of extrinsic abiotic factors. Palaeontology 56:1179–1198

    Article  Google Scholar 

  • Pagel M (2020) Can’t see the wood for the trees. Nature 580:461–462

    Article  CAS  Google Scholar 

  • Rabosky DL (2013) Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu Rev Ecol Evol Syst 44:481–502

    Article  Google Scholar 

  • Raup DM, Sepkoski JJ (1982) Mass extinctions in the marine fossil record. Science 215:1501–1503

    Article  CAS  Google Scholar 

  • Saupe EE, Myers CE, Peterson AT, Soberón J, Singarayer J, Valdes P, Qiao H (2019) Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat Ecol Evol 3:1419–1429

    Article  Google Scholar 

  • Sepkoski JJ (1986) Phanerozoic overview of mass extinction. In: Raup DM, Jablonski D (eds) Patterns and processes in the history of life. Springer, Berlin/Heidelberg, pp 277–295

    Chapter  Google Scholar 

  • Sepkoski JJ Jr (1996) Competition in macroevolution: the double wedge revisited. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. University of Chicago Press, Chicago, pp 211–255

    Google Scholar 

  • Silvestro D, Warnock RC, Gavryushkina A, Stadler T (2018) Closing the gap between palaeontological and neontological speciation and extinction rate estimates. Nat Commun 9:1–14

    Article  Google Scholar 

  • Stanley SM (1979) Macroevolution: pattern and process. W. H. Freeman, San Francisco

    Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–33

    Google Scholar 

  • Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245–258

    Article  Google Scholar 

  • Vrba ES (1980) Evolution, species and fossils: how does life evolve? S Afr J Sci 76:61–84

    Google Scholar 

  • Vrba ES (1993) Turnover-pulses, the Red Queen, and related topics. Am J Sci 293:418–452

    Article  Google Scholar 

  • Wiley EO, Lieberman BS (2011) The theory and practice of phylogenetic systematics, 2nd edn. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

Download references

Acknowledgments

We were limited in the references we could cite and encourage the interested reader to follow citation trails in the contributions listed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin E. Saupe .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Saupe, E.E., Myers, C.E. (2021). Macroevolution. In: Nuño de la Rosa, L., Müller, G.B. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-32979-6_126

Download citation

Publish with us

Policies and ethics