Skip to main content
Log in

Genomic Differentiation of 18S Ribosomal DNA and β-Satellite DNA in the Hominoid and its Evolutionary Aspects

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The chromosome localization of two human multisequence families, rDNA and β-satellite (β-sat) DNA, was determined in humans and apes using double color fluorescence in-situ hybridization. Both DNA probes showed a distinct hybridization pattern with species-specific variations in hominoids. The stepwise differentiation of the integration, amplification, multilocalization, and reduction of the DNAs were observed interspecifically through the seven species examined. The stepwise events allowed us to trace back a phylogenetic divergence of the hominoid at the cytogenetic level. The manifestation of the events revealed that variations of the Y chromosome and acrocentric autosomes were synapomorphic characters in the divergence and those of metacentric autosomes were autapomorphic characters. Multilocalization of rDNA in the hominoid could also be interpreted as a result of translocations in terms of hetero-site crossover followed by a centric fission and formation of an acrocentric chromosome. Based on the observed rearrangements of rDNA and β-sat DNA, we propose the following chromosomal phylogenetic divergence order in hominoids: gibbon-siamang-orangutan-gorilla-human-chimpanzee-bonobo. Our data provide additional evidence that evolution of the hominoid can be effectively studied using cytogenetic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti A, Rainaldi G, Lobbiani A et al. (1987) Chromosomal localization by in situ hybridization of the human Sau3A family of DNA repeats. Hum Genet 75: 326–332.

    Article  PubMed  CAS  Google Scholar 

  • Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK, eds. Evolution of Genes and Proteins. Sunderland: Sinauer Associates Inc, pp 38–61.

    Google Scholar 

  • Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci USA 77: 7323–7327.

    Article  PubMed  CAS  Google Scholar 

  • Assum G, Fink T, Steinbeißer T, Fisel KJ (1993) Analysis of human extrachromosomal DNA elements originiating from different β-satellite subfamilies. Hum Genet 91: 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Assum G, Gartmann C, Schempp W, Wöhr G (1994) Evolution of the chAB4 multisequence family in primates. Genomics 21: 34–41.

    Article  PubMed  CAS  Google Scholar 

  • Assum G, Pasantes J, Gläser B, Schempp W, Wöhr G (1998) Concerted evolution of members of the multisequence family chAB4 located on various nonhomologous chromosomes. Mammalian Genome 9: 58–63.

    Article  PubMed  CAS  Google Scholar 

  • Borowik OA (1995) Coding chromosomal data for phylogenetic analysis: phylogenetic resolution of the pan-homo-gorilla trichotomy. Syst Biol 44: 563–570.

    Article  Google Scholar 

  • Dover G, Coen E (1981) Springcleaning ribosomal DNA: a model for multigene evolution. Nature 290: 731–732.

    Article  PubMed  CAS  Google Scholar 

  • Driscoll DJ, Palmer CG, Melman A (1979) Nonhomologous associations of C-heterochromatin at human male meiotic prophase. Cytogenet Cell Genet 23: 23–32.

    PubMed  CAS  Google Scholar 

  • Gläser B, Grützner F, Willmann U et al. (1998) Simian Y chromosomes: species-specific rearrangements of DAZ, RBM and TSPY versus contiguity of PAR and SRY. Mammanlian Genome 9: 226–231.

    Article  Google Scholar 

  • Greig GM, Willard HF (1992) β Satellite DNA: characterization and localization of two subfamilies from the distal and proximal short arms of the human acrocentric chromosomes. Genomics 12: 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Harding RM, Boyce AJ, Clegg JB (1992) The evolution of tandemly repetitive DNA: Recombination rules. Genetics 132: 847–859.

    PubMed  CAS  Google Scholar 

  • Henderson AS, Atwood KC, Warburton D (1976) Chromosomal distribution of rDNA in Pan paniscus, Gorilla gorilla beringei, and Symphalangus syndactylus: Comparison to related primates. Chromosoma 59: 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, LoVerde PT (1995) FISH techniques for constructing physical maps on schistosome chromosomes. Parasitol Today 11: 310–314.

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Yamamoto M-T, Ogura K et al. (1994) Multiplication of 28S rDNA and NOR activity in chromosome evolution among ants of the Myrmecia pilosula species complex. Chromosoma 103: 171–178.

    PubMed  CAS  Google Scholar 

  • Hirai H, Yamamoto M-T, Taylor RW, Imai HT (1996) Genomic dispersion of 28S rDNA during karyotypic evolution in the ant genus Myrmecia (Formidae). Chromosoma 105: 190–196.

    Article  PubMed  CAS  Google Scholar 

  • Hirai H, Hasegawa Y, Kawamoto Y, Tokita E (1998) Tandem duplication of nucleolus organizer region (NOR) in the Japanese macaque, Macaca fuscata fuscata. Chromosome Res 6: 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Holmquist GP, Kapitonov VV, Jurka J (1998) Mobile genetic elements, chiasmata, and the unique organization of beta-heterochromatin. Cytogenet Cell Genet 80: 113–116.

    Article  PubMed  CAS  Google Scholar 

  • Imai HT, Maruyama T, Gojobori T, Inoue Y, Crozier RH (1986) Theoretical bases for karyotype evolution. 1. The minimum-interaction hypothesis. Am Nat 128: 900–920.

    Article  Google Scholar 

  • Jantsch M, Hamilton B, Mayr B, Schweizer D (1990) Meiotic chromosome behaviour reflects levels of sequence divergence in Sus scrofa domestica satellite DNA. Chromosoma 99: 330–335.

    Article  PubMed  CAS  Google Scholar 

  • Koide T, Ishiura M, Hazumi N, Shiroishi T, Okada Y, Uchida T (1990) Amplification of a long sequence that includes a processed pseudogene for elongation factor 2 in the mouse. Genomics 6: 80–88.

    Article  PubMed  CAS  Google Scholar 

  • Ledbetter DH (1981) NOR-bearing Y chromosome in a primate, Hylobates (Symphalangus) syndactylus. Cytogenet Cell Genet 29: 250–252.

    PubMed  CAS  Google Scholar 

  • Maeda N, Smithies O (1986) The evolution of multigene families: Human haptoglobin genes. Ann Rev Genet 20: 81–108.

    Article  PubMed  CAS  Google Scholar 

  • Meneveri R, Agresti A, Della Valle G, Talarico D, Siccardi AG, Ginelli E (1985) Identification of a human clustered G+C-rich family of repeats (Sau3A family). J Mol Biol 186: 483–489.

    Article  PubMed  CAS  Google Scholar 

  • Meneveri R, Agresti A, Marozzi A et al. (1993) Molecular organization and chromsomal location of human GC-rich heterochromatic blocks. Gene 123: 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Meneveri R, Agresti A, Rocchi M, Marozzi A, Ginelli E (1995) Analysis of GC-rich repetitive nucleotide sequences in great apes. J Mol Evol 40: 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Nasir J, Fisher EMC, Brockdorff N, Disteche CM, Lyon MF, Brown SD (1990) Unusual molecular characteristics of a repeat sequence island within a giemsa-positive band on the mouse X chromosome. Proc Natl Acad Sci USA 87: 399–403.

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (1987) Simulating evolution by gene duplication. Genetics 115: 207–213.

    PubMed  CAS  Google Scholar 

  • Ohta T, Dover GA (1983) Population genetics of multigene families that are dispersed into two or more chromosomes. Proc Natl Acad Sci USA 80: 4079–4083.

    Article  PubMed  CAS  Google Scholar 

  • Schempp W, Zeitler S, Reitschel W (1998) Chromosomal localization of rDNA in the gorilla. Cytogenet Cell Genet 80: 185–187.

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Krone W, Vogel W (1974) On the relationship between the frequency of association and the nuclear constriction of individual acrocentric chromosomes. Humangenetik 23: 267–277.

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Grunert D, Haaf T, Engel W (1983) A direct demonstration of somatically paired heterochromatin of human chromosomes. Cytogenet Cell Genet 36: 554–561.

    PubMed  CAS  Google Scholar 

  • Schwarzacher T, Mayr B, Scweizer D (1984) Heterochromatin and necleolus-organizer-region behaviour at male pachytene of Sus scriofa domestica. Chromosoma 91: 12–19.

    Article  PubMed  CAS  Google Scholar 

  • Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. Chromosomes Today 9: 61–74.

    Google Scholar 

  • Seuanez HN, Evans HJ, Martin DE, Fletcher J (1979) An inversion of chromosome 2 that distinguishes between Bornean and Sumatran orangutans. Cytogenet Cell Genet 23: 137–140.

    PubMed  CAS  Google Scholar 

  • Suzuki H, Kurihara T, Kanehisa T, Moriwaki K (1990) Variation in the distribution of silver-staining nucleolar organizer regions on the chromosomes of the wild mouse, Mus musculus. Mol Biol Evol 7: 271–282.

    PubMed  CAS  Google Scholar 

  • Tartof KD, Dawid IB (1976) Similarities and differences in the structure of X and Y chromosome rDNA genes of Drosophila. Nature 263: 27–30.

    Article  PubMed  CAS  Google Scholar 

  • Tuck-Muller CM, Bordson BL, Varela M, Bennett JW (1984) NOR associations with heterochromatin. Cytogenet Cell Genet 38: 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Waye JS, Willard HF (1989) Human β satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc Natl Acad Sci USA 86: 6250–6254.

    Article  PubMed  CAS  Google Scholar 

  • Yunis J, Prakash O (1982) The origin of man: A chromosomal pictorial legacy. Science 215: 1525–1530.

    PubMed  CAS  Google Scholar 

  • Zang KD, Back E (1968) Quantitative studies on the arrangement of human metaphase chromosomes. I. Individual features in the association pattern of the acrocentric chromosomes of normal males and females. Cytogenetics 7: 455–470.

    PubMed  CAS  Google Scholar 

  • Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1980) Rapid duplication and loss of genes coding for the α chains of hemoglobin. Proc Natl Acad Sci USA 77: 2158–2162.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, H., Taguchi, T. & Godwin, A.K. Genomic Differentiation of 18S Ribosomal DNA and β-Satellite DNA in the Hominoid and its Evolutionary Aspects. Chromosome Res 7, 531–540 (1999). https://doi.org/10.1023/A:1009237412155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009237412155

Navigation